Please use this identifier to cite or link to this item: http://bdtd.uftm.edu.br/handle/tede/209
Full metadata record
DC FieldValueLanguage
dc.creatorOLIVEIRA, Anselmo Alves de-
dc.creator.Latteshttp://lattes.cnpq.br/1662078814188116por
dc.contributor.advisor1ORSATTI, Fábio Lera-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2185904879371466por
dc.date.accessioned2016-02-23T17:02:21Z-
dc.date.issued2014-12-11-
dc.identifier.citationOLIVEIRA, Anselmo Alves de. Adaptações morfológicas e respostas moleculares do músculo esquelético em modelo experimental de artrite reumatoide submetido ao exercício de força. 2014. 53 f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2014.por
dc.description.resumoIntrodução: durante a artrite reumatóide (AR) há perda significativa da massa muscular (caquexia reumatóide) resultante principalmente do processo inflamatório crônico e consequente aumento de proteínas catabólicas (MurF-1, atrogina e miostatina). O exercício de força (EF) é um conhecido promotor do crescimento muscular que ocorre em decorrência de sinalizações moleculares que estimulam a ativação das células satélites por meio de proteínas anabólicas (IGF-1, MyoD e miogenina). No entanto, as respostas moleculares do músculo esquelético induzidas pelo EF durante o processo inflamatório crônico não são totalmente conhecidas. Objetivo: avaliar as respostas moleculares envolvidas no anabolismo e catabolismo do músculo esquelético após estímulo agudo de EF em ratos induzidos à AR. Metodologia: participaram do estudo 32 ratos Wistar, fêmeas (8 semanas, 126 ± 24g), divididas em quatro grupos: grupo controle (GCT, n=8); grupo exercício (GEx, n=8); grupo artrite (GAR, n=8) e grupo artrite + exercício (GAR+Ex, n=8). O protocolo de indução de AR foi realizado com duas injeções aplicadas subcutaneamente e uma nas articulações dos tornozelos das patas traseiras, separadas por intervalos de sete dias. Após 15 dias, os animais foram submetidos a uma sessão de EF (protocolo de escalada) e 6 horas após foram eutanasiados. As manifestações externas da doença (perimetria articular e escore de inflamação), assim como, o peso e a ingestão de ração foram avaliados continuamente nos grupos artrite (AR) e controle (CT). A área de secção transversa (AST) das fibras dos músculos gastrocnêmios foi analisada em 200 células pelo método hematoxilina e eosina. No músculo Gastrocnêmio foram analisadas as expressões de RNA mensageiro (RNAm) de IGF-1, MyoD, Miogenina, Miostatina, Murf-1, atrogina e GAPDH (controle endógeno) pelo método PCR quantitativo em tempo real e calculados pelo método de Livak (ΔΔCT). A comparação entre grupos foi feita por ANOVA one-way e test t independente. Os valores contínuos foram analisados por ANOVA de medidas repetidas (comparações intra grupos x momentos). Os dados são apresentados como média e erro padrão da média (SEM). O nível de significância adotada foi p≤0,05. Resultados: o protocolo de indução gerou aumento nos indicadores externos da doença (p<0,001) além de reduções na AST e peso úmido do músculo gastrocnêmio (p≤ 0,05). Foram observados aumentos nos níveis de RNAm de miostatina (4,5 vezes), atrogina (2,5 vezes), MyoD (3,7 vezes) e miogenina (5 vezes) no grupo GAR. O grupo GAR+Ex não apresentou alterações de miostatina e atrogina, e reduziu os níveis de Murf-1 (60%). A expressão de miogenina aumentou no grupo GEx (4 vezes). Conclusão: concluímos que a AR induziu atrofia muscular concomitantemente com aumentos nos níveis de RNAm de Miogenina, MyoD, Miostatina e atrogina. Uma sessão de EF foi capaz de normalizar a expressão de RNAm de miostatina e atrogina e reduzir Murf-1 em ratas induzidas à AR.por
dc.description.abstractIntroduction: During rheumatoid arthritis (RA) the loss of muscle mass (rheumatoid cachexia) occurs due to chronic inflammation and consequent increase in catabolic proteins (Murf-1, myostatin and atrogin). Resistance exercise (RE) is a well kwon intervention which promotes muscle mass gains that occurs as a result of molecular signal of satellite cells through proteins anabolic (IGF-1, MyoD and miogenin). However, skeletal muscle molecular response induced by RE in presence of RA are not well elucidated. Objectives: To analyze skeletal muscle anabolism and catabolism responses to an animal experimental model of RA submitted to an acute bout of RE. Methods: 32 females Wistar rats (8 weeks, 126 ± 24g) were randomic allocated into four groups, control group (GCT, n=8), exercise group (GEx, n=8), control arthritis group (GAR, n=8) and arthritis plus exercise group (GAR+Ex, n=8). The RA induced protocols were conducted with two subcutaneous injections applications and one in the hind paws ankles, with intervals of seven days between applications. After 15 days the animals were submitted to an acute bout of RE (climb protocol) and six hours post protocol animals were euthanized. The external manifestations of RA (perimeter joint and inflammation score), as well as animal weight and feed intake were evaluated throughout the study in the arthritis (AR) and control (CT) groups. The cross-sectional area (CSA) fibers of the gastrocnêmio muscle were analyzed in 200 cells by hematoxylin and eosin method. The gastrocnemius muscle mRNA expression of IGF-1, MyoD, Myogenin, myostatin, Murf-1, atrogin and GAPDH (endogenous control) were analyzed by quantitative real time PCR followed by Livak method (ΔΔCT). Data are present by mean and standard error mean (SEM), groups comparisons were performed by one-way ANOVA (Comparisons between groups), repeated measures ANOVA (Comparisons within groups x Moments) and test t independent. Alpha level was significant when p≤0.05. Results: The RA induction protocol increased external manifestations (p <0.001) and reduced CSA and wet weight of gastrocnemiu muscle (p ≤ 0.05).Increased mRNA levels of Myostatin (4.5 fold), atrogin (2.5 fold), MyoD (3.7-fold) and Myogenin (5 fold) were only observed in the GAR group. The GAR+Ex group reduced mRNA levels of Murf-1 (60%) and no changes were observed in myostatin and atrogin. The GEx group increased mRNA levels of myogenin (4 fold). Conclusion: We concluded that RA induced muscle atrophy and increased mRNA levels of Miogenin, MyoD, Miostatin and atrogin, although an acute bout of RE was efficient to normalize mRNA levels of Miostatin and atrogin and reduced Murf-1 in female rats RA induced.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/820/Dissert%20Anselmo%20A%20Oliveira%20reorganizada.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Físicapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Educação Físicapor
dc.relation.referencesADAMS, V. et al. Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol, v. 384, n. 1, p. 48-59, Dec 5 2008. AGUIAR, A. F. et al. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats. Int J Sports Med, v. 34, n. 4, p. 293-301, Apr 2013. ALAMANOS, Y.; DROSOS, A. A. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev, v. 4, n. 3, p. 130-6, Mar 2005. BAKER, J. F. et al. Deficits in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care Res (Hoboken), Mar 24 2014. BAR, K. J. et al. The proportion of TRPV1 protein-positive lumbar DRG neurones does not increase in the course of acute and chronic antigen-induced arthritis in the knee joint of the rat. Neurosci Lett, v. 361, n. 1-3, p. 172-5, May 6 2004. BEGUE, G. et al. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One, v. 8, n. 2, p. e57141, 2013. BÉRTOLO, M. B. et al. Atualização do Consenso Brasileiro no Diagnóstico e Tratamento da Artrite Reumatóide. Revista Brasileira de Reumatologia, v. 47, n. 3, p. 8, maio/junho 2007. BICKEL, C. S. et al. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985), v. 98, n. 2, p. 482-8, Feb 2005. BOLLINGER, L. M. et al. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. Am J Physiol Cell Physiol, v. 307, n. 3, p. C278-87, Aug 1 2014. CAMPOS, G. E. et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol, v. 88, n. 1-2, p. 50-60, Nov 2002. CASTILLERO, E. et al. IGF-I system, atrogenes and myogenic regulatory factors in arthritis induced muscle wasting. Mol Cell Endocrinol, v. 309, n. 1-2, p. 8-16, Oct 15 2009. CASTILLERO, E. et al. Fenofibrate, a PPAR{alpha} agonist, decreases atrogenes and myostatin expression and improves arthritis-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab, v. 300, n. 5, p. E790-9, May 2011. CHARGE, S. B.; RUDNICKI, M. A. Cellular and molecular regulation of muscle regeneration. Physiol Rev, v. 84, n. 1, p. 209-38, Jan 2004. CHARGÉ, S. B. P.; RUDNICK, M. A. Cellular and molecular regulation of muscle regeneration. Physiol Rev, v. 84, p. 209-238, 2004. CLOWES, G. H., JR. et al. Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med, v. 308, n. 10, p. 545-52, Mar 10 1983. DADOUN, S. et al. Mortality in rheumatoid arthritis over the last fifty years: systematic review and meta-analysis. Joint Bone Spine, v. 80, n. 1, p. 29-33, Jan 2013. DE NAEYER, H. et al. Androgenic and estrogenic regulation of Atrogin-1, MuRF1 and myostatin expression in different muscle types of male mice. Eur J Appl Physiol, v. 114, n. 4, p. 751-61, Apr 2014. DE OLIVEIRA NUNES TEIXEIRA, V. et al. Muscle wasting in collagen-induced arthritis and disuse atrophy. Exp Biol Med (Maywood), v. 238, n. 12, p. 1421-30, Dec 2013. DEHOUX, M. et al. IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA. Am J Physiol Endocrinol Metab, v. 292, n. 1, p. E145-50, Jan 2007. DRUMMOND, M. J. et al. Myogenic regulatory factor response to resistance exercise volume in skeletal muscle. Eur J Appl Physiol, v. 108, n. 4, p. 771-8, Mar 2010. FAPPI, A. et al. The effects of omega-3 fatty acid supplementation on dexamethasone-induced muscle atrophy. Biomed Res Int, v. 2014, p. 961438, 2014. FILIPPIN, L. I. et al. Temporal development of muscle atrophy in murine model of arthritis is related to disease severity. J Cachexia Sarcopenia Muscle, v. 4, n. 3, p. 231-8, Sep 2013. FLUCK, M.; HOPPELER, H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev Physiol Biochem Pharmacol, v. 146, p. 159-216, 2003. GOODMAN, C. A. et al. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol, v. 27, n. 11, p. 1946-57, Nov 2013. GRANADO, M. et al. Experimental arthritis inhibits the insulin-like growth factor-I axis and induces muscle wasting through cyclooxygenase-2 activation. Am J Physiol Endocrinol Metab, v. 292, n. 6, p. E1656-65, Jun 2007. GRANADO, M. et al. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am J Physiol Endocrinol Metab, v. 288, n. 3, p. E486-92, Mar 2005. HANSSEN, K. E. et al. The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scand J Med Sci Sports, v. 23, n. 6, p. 728-39, Dec 2013. HAWKE, T. J.; GARRY, D. J. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985), v. 91, n. 2, p. 534-51, Aug 2001a. ______. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol, v. 91, n. 2, p. 534-51, Aug 2001b. HOLLAN, I. et al. Cardiovascular disease in autoimmune rheumatic diseases. Autoimmun Rev, v. 12, n. 10, p. 1004-15, Aug 2013. KOSEK, D. J. et al. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol (1985), v. 101, n. 2, p. 531-44, Aug 2006. LEMMEY, A. B. et al. Effects of high-intensity resistance training in patients with rheumatoid arthritis: a randomized controlled trial. Arthritis Rheum, v. 61, n. 12, p. 1726-34, Dec 15 2009. LEVY, L. et al. Incidence and risk of fatal myocardial infarction and stroke events in rheumatoid arthritis patients. A systematic review of the literature. Clin Exp Rheumatol, v. 26, n. 4, p. 673-9, Jul-Aug 2008. LIESKOVSKA, J.; GUO, D.; DERMAN, E. Growth impairment in IL-6-overexpressing transgenic mice is associated with induction of SOCS3 mRNA. Growth Horm IGF Res, v. 13, n. 1, p. 26-35, Feb 2003. LOPEZ-MENDUINA, M. et al. Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3. Am J Physiol Regul Integr Comp Physiol, v. 299, n. 2, p. R541-51, Aug 2010. MACEDO, A. G. et al. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. J Steroid Biochem Mol Biol, v. 143, p. 357-64, Sep 2014. MASCHER, H. et al. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab, v. 294, n. 1, p. E43-51, Jan 2008. MATHENY, R. W. et al. Serum IGF-I-deficiency does not prevent compensatory skeletal muscle hypertrophy in resistance exercise. Exp Biol Med (Maywood), v. 234, n. 2, p. 164-70, Feb 2009. MORLEY, J. E.; THOMAS, D. R.; WILSON, M. M. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr, v. 83, n. 4, p. 735-43, Apr 2006. MUNOZ-CANOVES, P. et al. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J, v. 280, n. 17, p. 4131-48, Sep 2013. MUSCARITOLI, M. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) "cachexia-anorexia in chronic wasting diseases" and "nutrition in geriatrics". Clin Nutr, v. 29, n. 2, p. 154-9, Apr 2010. OKEN, O. et al. Factors associated with functional disability in patients with rheumatoid arthritis. Rheumatol Int, v. 29, n. 2, p. 163-6, Dec 2008. PETTE, D.; STARON, R. S. Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol, v. 115, n. 5, p. 359-72, May 2001. PSILANDER, N.; DAMSGAARD, R.; PILEGAARD, H. Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol (1985), v. 95, n. 3, p. 1038-44, Sep 2003. PURINTRAPIBAN, J.; WANG, M. C.; FORSBERG, N. E. Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comp Biochem Physiol B Biochem Mol Biol, v. 136, n. 3, p. 393-401, Nov 2003. RALL, L. C.; ROUBENOFF, R. Rheumatoid cachexia: metabolic abnormalities, mechanisms and interventions. Rheumatology (Oxford), v. 43, n. 10, p. 1219-23, Oct 2004. RAMIREZ, C. et al. Joint inflammation alters gene and protein expression and leads to atrophy in the tibialis anterior muscle in rats. Am J Phys Med Rehabil, v. 90, n. 11, p. 930-9, Nov 2011. ROCHA, O. M. et al. Sarcopenia da caquexia reumatoide: conceituação, mecanismos, consequências clínicas e tratamentos possíveis. Rev Bras Reumatol, v. 49, n. 3, p. 288-301, 2009. RODRIGUEZ, J. et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci, Jul 31 2014. ROUBENOFF, R. et al. Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest, v. 93, n. 6, p. 2379-86, Jun 1994. ROUBENOFF, R. et al. Rheumatoid cachexia: depletion of lean body mass in rheumatoid arthritis. Possible association with tumor necrosis factor. J Rheumatol, v. 19, n. 10, p. 1505-10, Oct 1992. SARIYILDIZ, M. A. et al. Sleep quality in rheumatoid arthritis: relationship between the disease severity, depression, functional status and the quality of life. J Clin Med Res, v. 6, n. 1, p. 44-52, Feb 2014. SCOTT, D. L.; WOLFE, F.; HUIZINGA, T. W. Rheumatoid arthritis. Lancet, v. 376, n. 9746, p. 1094-108, Sep 25 2010. SENF, S. M.; DODD, S. L.; JUDGE, A. R. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol Cell Physiol, v. 298, n. 1, p. C38-45, Jan 2010. SENNA, E. R. et al. Prevalence of rheumatic diseases in Brazil: a study using the COPCORD approach. J Rheumatol, v. 31, n. 3, p. 594-7, Mar 2004. SMITH, C. A.; ARNETT, F. C., JR. Diagnosing rheumatoid arthritis: current criteria. Am Fam Physician, v. 44, n. 3, p. 863-70, Sep 1991. STRASSER, B. et al. The effects of strength and endurance training in patients with rheumatoid arthritis. Clin Rheumatol, v. 30, n. 5, p. 623-32, May 2011. TEIXEIRA, V. O. N.; FILIPPIN, L. I.; XAVIER, R. M. Mechanisms of muscle wasting in sarcopenia. Rev Bras Reumatol, v. 52, n. 2, p. 252-9, Mar-Apr 2012. VAN DER WOUDE, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum, v. 60, n. 4, p. 916-23, Apr 2009. WALSMITH, J.; ROUBENOFF, R. Cachexia in rheumatoid arthritis. Int J Cardiol, v. 85, n. 1, p. 89-99, Sep 2002. WERNBOM, M. et al. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol, v. 113, n. 12, p. 2953-65, Dec 2013. WOLFE, F. et al. The mortality of rheumatoid arthritis. Arthritis Rheum, v. 37, n. 4, p. 481-94, Apr 1994. YANG, Y. et al. STAT3 induces muscle stem cell differentiation by interaction with myoD. Cytokine, v. 46, n. 1, p. 137-41, Apr 2009. ZANOU, N.; GAILLY, P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci, v. 70, n. 21, p. 4117-30, Nov 2013.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectExercício resistidopor
dc.subjectHipertrofia muscularpor
dc.subjectInflamaçãopor
dc.subjectAtrofia muscularpor
dc.subjectResistance exerciseeng
dc.subjectMuscle hypertrophyeng
dc.subjectInflammationeng
dc.subjectMuscle atrophyeng
dc.subject.cnpqEducação Físicapor
dc.titleAdaptações morfológicas e respostas moleculares do músculo esquelético em modelo experimental de artrite reumatóide submetido ao exercício de forçapor
dc.typeDissertaçãopor
Appears in Collections:Programa de Pós-Graduação em Educação Física

Files in This Item:
File Description SizeFormat 
Dissert Anselmo A Oliveira reorganizada.pdfDissert Anselmo A Oliveira1,24 MBAdobe PDFThumbnail

Download/Open Preview


This item is licensed under a Creative Commons License Creative Commons