Please use this identifier to cite or link to this item: http://bdtd.uftm.edu.br/handle/tede/772
Full metadata record
DC FieldValueLanguage
dc.creatorALEIXO, André Adriano Rocha-
dc.creator.Latteshttp://lattes.cnpq.br/5804958860378612por
dc.contributor.advisor1MICHELIN, Márcia Antoniazi-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2599409028588669por
dc.contributor.advisor-co1BORGERS, John Paul-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5724192420139830por
dc.date.accessioned2019-07-17T20:35:56Z-
dc.date.issued2018-06-13-
dc.identifier.citationALEIXO, André Adriano Rocha. Caracterização do infiltrado celular, avaliação dos marcadores de densidade microvascular, (CD31, CD105) e marcador de proliferação celular (Ki-67) no câncer de mama 4T1 em camundongos tratados com vacina de células dendríticas, terapia com Interferon-alpha e trapia combinada. 2018. 65f. Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.por
dc.description.resumoEste estudo teve como objetivo investigar a influência do tratamento com a vacina de células dendríticas, Interferon-α e terapia combinada (células dendríticas e Interferon-α) na resposta imune no modelo experimental de câncer de mama induzido através da linhagem tumoral 41T. Nessa perspectiva, este estudo analisou células imunes encontradas no baço CD3+, CD4+ e macrófagos CD14+ alterações na síntese das citocinas IL-10, IL-12, IFN-γ, TNF-α e CD25 +, bem como o infiltrado de linfócitos CD3+, CD4+ CD8+ microdensidade vascular (CD31), (CD105) e proliferação celular (Ki-67) no tumor em camundongos Balb / c, inoculados com (4T1). Os animais foram divididos em seis grupos, cada qual com 10 animais: grupo (1) controle (C), grupo sem tratamento e sem tumor, grupo (2) controle dendríticas (DCs), animais tratados com vacina de células dendríticas sem inoculação da linhagem tumoral 4T1, grupo (3) grupo tumor (T), animais inoculados com linhagem tumoral 4T1 e posteriormente tratados com solução salina a 0,9%, grupo (4), grupo tumor dendríticas tratado (T + DCs), animais inoculados com linhagem tumoral 4T1 e subsequentemente tratados com células dendríticas, grupo (5), grupo tratado com IFN-α (T + IFN-α), animais com inoculação de linhagem tumoral 4T1 e subsequentemente tratados IFN-α, e grupo (6), grupo tumor tratado com IFN-α e vacina de células dendríticas (T + IFN-α + DCs), animais inoculados com linhagem tumoral 4T1 e posteriormente tratados com IFN-α e DCs vacina. Observamos que a indução de tumor, nos grupos de imunoterapia combinados com Interferon-α + células dendríticas e imunoterapia isolada somente com Interferon-α, reduziu as quantidades de linfócitos, de linfócitos produtores de citocinas Th1, macrófagos peritoneais e aumentou a presença de citocinas Th2 e células Treg. Os resultados também evidenciaram que as células dendríticas, mesmo na presença do tumor, grupo tumoral (T + DCs), foram capazes de promover uma diminuição na expressão das proteínas envolvidas na microdensidade vascular (CD31), (CD105) e na proliferação celular (Ki-67). Houve também um aumento na expressão de linfócitos CD4+ e CD8+ intratumorais no grupo tratado com vacina de células dendríticas na presença do tumor. Portanto, podemos concluir que o microambiente tumoral parece ter uma forte influência negativa sobre a ação efetora do Interferon-α. Apenas a presença das células dendríticas no tumor promoveu a polarização do sistema Imune para um perfil de padrão de resposta anti-tumoral Th1. No entanto, mais estudos são necessários para buscar o melhor entendimento da biologia e ação adjuvante do IFN-α juntamente com as células dendríticas.por
dc.description.abstractThis study aims investigate the influence the treatment with dendritic cell vaccine, Interferon- α and combination therapy (dendritic cells and Interferon-α) on the immune response in the proposed experimental model of breast cancer. In this perspective, this study analyzed through assessments of immune cells found in the spleen CD3+ and CD4+ and macrophages CD14+ and changes in the synthesis of cytokines IL-10, IL-12, IFN-γ, TNF-α, and CD25+ as well as the infiltrate of the lymphocyte CD3+, CD4+, CD8+ and vascular microdensity (CD31), (CD105) , cell proliferation (Ki-67), in Balb/c mice, inoculated with (4T1). For this study, we used animals were divided into six groups; the group I, control (C) no treat and no tumor (n=10) animals, group II, control treated with DCs vaccine (DC) (n = 10) animals without inoculation of the 4T1 tumoral lineage and later treated with DCs, group III, tumor (T) (n = 10) animals inoculated with 4T1 tumoral lineage and subsequently treated with 0.9% saline solution, group IV, tumor treated with DCs (T + DCs) (n = 10) animals inoculated with 4T1 tumoral lineage and subsequently treated with dendritic cells, group V, tumor treated with IFN-α (T + IFN-α) (n = 10) animals with inoculation of 4T1 tumoral lineage and subsequently treated IFN-α, and group VI, tumor treated with IFN-α and DCs vaccine (T + IFN-α + DCs) (n = 10) animals inoculated with 4T1 tumoral lineage and subsequently treated with IFN-α and DCs vaccine. We can observe that the induction of tumor, on the immunotherapy groups combined with Interferon-α and DC's, and also on immunotherapy isolated only with Interferon-α, reduces the quantities of lymphocytes and also lymphocytes producers of Th1 cytokines, peritoneal macrophages and increases the presence of Th2 cytokines and Treg cells. The results also demonstrated that the DCs, even in the presence of the tumor, group (T + DCs) was able to promote a decrease in the expression of the proteins involved in vascular microdensity (CD31), (CD105) and in cell proliferation (Ki-67). It was also possible to observe an increase in the expression of intratumoral CD4+ and CD8+ lymphocytes in the group treated with DCs vaccine in the presence of the tumor. Therefore we can conclude that tumor microenvironment seems to have a negative strong influence on the effector action of Interferon-α. On the contrary, only presence of the DC's on the tumor promoted immune system polarization toward an anti-tumor Th1 response pattern profile. Nevertheless, more studies are needed to seek the best understanding of the biology and adjuvant action of IFN-α together with dendritic cells.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/4992/Tese%20Andre%20A%20R%20Aleixo.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências da Saúdepor
dc.relation.referencesABADIE, J. J.; AMARDEILH, M. A.; DELVERDIER, M. E. Immunohistochemical detection of proliferating cell nuclear antigen and Ki-67 in mast cell tumors from dogs. Journal of the American Veterinary Medical Association, v. 215, n. 11, p. 1629–34, 1 dez. 1999. AHMEDIN JEMAL et al. O Atlas do Câncer. Atlanta, Geórgia, EUA: [s.n.]. ARDAVÍN, C. Origin, precursors and differentiation of mouse dendritic cells. Nature Reviews Immunology, v. 3, n. 7, p. 582–591, 2003. BANCHEREAU, J.; PALUCKA, A. K. Dendritic cells as therapeutic vaccines against cancer. Nature Reviews Immunology, v. 5, n. 4, p. 296–306, 2005. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. Nature, v. 392, n. 6673, p. 245–252, 19 mar. 1998. BARBOSA, T. V. et al. Prognostic significance of Ki-67 in great cell undifferentiated carcinoma of the major salivary glands: study of 11 cases. Revista Brasileira de Otorrinolaringologia, v. 69, n. 5, p. 629–634, out. 2003. CARMELIET, P & JAIN, R. Angiogenesis in cancer and other disease. Nature, v. 407, p. 249– 257, 2000. CATTORETTI, G. et al. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. The Journal of Pathology, v. 168, n. 4, p. 357–363, dez. 1992. CHIBA, T.; MARUSAWA, H.; USHIJIMA, T. Inflammation-associated cancer development in digestive organs: Mechanisms and roles for genetic and epigenetic modulation. Gastroenterology, v. 143, n. 3, p. 550–563, 2012. DE VISSER, K. E.; EICHTEN, A.; COUSSENS, L. M. Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, v. 6, n. 1, p. 24–37, 2006. DUNN, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nature Immunology, v. 6, n. 7, p. 722–729, 12 jul. 2005. EL-GOHARY, Y. M. et al. Endoglin (CD105) and vascular endothelial growth factor as59 prognostic markers in prostatic adenocarcinoma. American Journal of Clinical Pathology, v. 127, n. 4, p. 572–579, 2007. FOLKMAN J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine, v. 1, p. 27–31, 1995. GASPARINI, G. et al. Cell kinetics in human breast cancer: Comparison between the prognostic value of the cytofluorimetric S‐phase fraction and that of the antibodies to Ki‐67 and PCNA antigens detected by immunocytochemistry. International Journal of Cancer, v. 57, n. 6, p. 822–829, 1994. GOBBI, H. Classificação dos tumores da mama: atualização baseada na nova classificação da Organização Mundial da Saúde de 2012. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 48, n. 6, p. 463–474, 2012. GOLOMB, H. M. et al. Alpha-2 interferon therapy of hairy-cell leukemia: a multicenter study of 64 patients. Journal of Clinical Oncology, v. 4, n. 6, p. 900–905, jun. 1986. GUTTERMAN, J. U. Cytokine therapeutics: lessons from interferon alpha. Proceedings of the National Academy of Sciences of the United States of America, v. 91, n. 4, p. 1198–205, 15 fev. 1994. HANAHAN, D.; WEINBERG, R. A. The Hallmarks of Cancer. Cell, v. 100, n. 1, p. 57–70, jan. 2000. IGNEY, F. H.; KRAMMER, P. H. Immune escape of tumors: apoptosis resistance and tumor counterattack. J. Leukoc. Biol., v. 71, n. 6, p. 907–920, 2002. JANEWAY, C. A; MEDZHITOV, R. Innate immune recognition. Annual review of immunology, v. 20, n. 2, p. 197–216, 2002. JIANG, T. et al. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer. Translational Oncology, v. 10, n. 2, p. 132–141, 2017. KOUKOURAKIS, M. I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. International Journal of Radiation Oncology Biology Physics, v. 53, n. 5, p. 1192–1202, 2002. LAPENTA, C. et al. IFN-α-conditioned dendritic cells are highly efficient in inducing cross60 priming CD8+ T cells against exogenous viral antigens. European Journal of Immunology, v. 36, n. 8, p. 2046–2060, ago. 2006. LASFAR, A. et al. IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy, v. 8, n. 8, p. 877–888, jul. 2016. LE BON, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nature Immunology, v. 4, n. 10, p. 1009–1015, 21 out. 2003. LEE, S. H. et al. Early Expression of Angiogenesis Factors in Acute Myocardial Ischemia and Infarction. New England Journal of Medicine, v. 342, n. 9, p. 626–633, 2 mar. 2000. LONGHI, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4 + Th1 immunity with poly IC as adjuvant. The Journal of Experimental Medicine, v. 206, n. 7, p. 1589–1602, 6 jul. 2009. LOOSE, D.; VAN DE WIELE, C. The Immune System and Cancer. Cancer Biotherapy & Radiopharmaceuticals, v. 24, n. 3, p. 369–376, jun. 2009. MANTOVANI, A. et al. Cancer-related inflammation. Nature, v. 454, n. 7203, p. 436–444, 24 jul. 2008. MARÇOLA, M.; RODRIGUES, C. E. Endothelial progenitor cells in tumor angiogenesis: Another brick in the wall. Stem Cells International, v. 2015, p. 10, 2015. MINEO, T. C. Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB-IIA non-small cell lung cancer. Journal of Clinical Pathology, v. 57, n. 6, p. 591–597, 2004. MIYATA, Y.; SAGARA, Y.; WATANABE, S. CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Archiv, v. 463, p. 673–679, 2013. MÜLLER, A. M. et al. Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Experimental and molecular pathology, v. 72, n. 3, p. 221–229, 2002. NAHED, A. S.; SHAIMAA, M. Y. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biology & Medicine, v. 13, n. 4, p. 496, 2016. NANCIE PETRUCELLI, MARY B DALY, T. P. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews, v. 4, 2017. NAOYO NISHIDA, HIROHISA YANO,TAKASHI NISHIDA, TOSHIHARU KAMURA, AND M. K. Angiogenesis in Cancer. Vasc Health Risk Manag., v. 2, p. 213–219., 2006. NIKITEAS, N. I. et al. Vascular endothelial growth factor and endoglin (CD-105) in gastric cancer. Gastric Cancer, v. 10, n. 1, p. 12–17, 2007. PANTSCHENKO, A. G. et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol, v. 23, n. 2, p. 269–284, 2003. PANTSCHENKO AG, PUSHKAR I, ANDERSON KH, WANG Y, MILLER LJ, KURTZMAN SH, BARROWS G, K. D. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol., v. 23, p. 269–84., 2003. PRIVRATSKY, J. R. et al. Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity. Journal of Cell Science, v. 124, n. 9, p. 1477–1485, 1 maio 2011. PRIVRATSKY, J. R.; NEWMAN, P. J. PECAM-1: regulator of endothelial junctional integrity. Cell and Tissue Research, v. 355, n. 3, p. 607–619, 17 mar. 2014. QUAIL, D.; JOYCE, J. Microenvironmental regulation of tumor progression and metastasis. Nature medicine, v. 19, n. 11, p. 1423–1437, 2013. RIZZA, P. et al. IFN-alpha as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use. Expert review of vaccines, v. 10, n. 4, p. 487–498, 2011. RIZZA, P. et al. Role of type I interferon in inducing a protective immune response: Perspectives for clinical applications. Cytokine and Growth Factor Reviews, v. 26, n. 2, p. 195–201, 2015. ROMERIO, F.; RIVA, A.; ZELLA, D. Interferon-α 2b reduces phosphorylation and activity of MEK and ERK through a Ras/Raf-independent mechanism. British Journal of Cancer, v. 83, n. 4, p. 532–538, ago. 2000. SAHIN, A. A. et al. Ki-67 immunostaining in node-negative stage I/II breast carcinoma. Significant correlation with prognosis. Cancer, v. 68, n. 3, p. 549–57, 1 ago. 1991. SALCEDO, X. et al. Review article: Angiogenesis soluble factors as liver disease markers. Alimentary Pharmacology and Therapeutics, v. 22, n. 1, p. 23–30, 2005. SANTINI, S. M. et al. IFN-alpha in the Generation of Dendritic Cells for Cancer Immunotherapy. In: Dendritic Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 295–317. SCHIMMING, R.; MARMÉ, D. Endoglin (CD105) expression in squamous cell carcinoma of the oral cavity. Head & neck, v. 24, n. 2, p. 151–6, 2002. SHOKOUH, T. Z.; EZATOLLAH, A.; BARAND, P. Interrelationships Between Ki67, HER2/neu, p53, ER, and PR Status and Their Associations With Tumor Grade and Lymph Node Involvement in Breast Carcinoma Subtypes. Medicine, v. 94, n. 32, p. e1359, 2015. SPADARO, F. et al. IFN- enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood, v. 119, n. 6, p. 1407–1417, 9 fev. 2012. STEWART, B.; WILD, C. World cancer report 2014. [s.l: s.n.]. TADBIR, A. A. et al. Expression of Ki67 and CD105 as Proliferation and Angiogenesis Markers in Salivary Gland Tumors. Asian Pacific Journal of Cancer Prevention, v. 13, n. 10, p. 5155–5159, 2012a. TADBIR, A. A. et al. Expression of Ki67 and CD105 as proliferation and angiogenesis markers in salivary gland tumors. Asian Pacific Journal of Cancer Prevention, v. 13, n. 10, p. 5155– 5159, 2012b. TORRE, L. A. et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, v. 65, n. 2, p. 87–108, mar. 2015. TRAN, U. et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development, v. 137, n. 7, p. 1107–1116, 1 abr. 2010. URRUTICOECHEA, A.; SMITH, I. E.; DOWSETT, M. Proliferation marker Ki-67 in early breast cancer. Journal of Clinical Oncology, v. 23, n. 28, p. 7212–7220, 2005. VISSER, K. E. DE; EICHTEN, A.; COUSSENS, L. M. Paradoxical roles of the immune system during cancer development. v. 6, n. January, p. 24–37, 2006. WATNICK, R. S. et al. The Role of the Tumor Microenvironment in Regulating Angiogenesis The Role of the Tumor Microenvironment in Regulating Angiogenesis. 2013.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectCâncer de mama.por
dc.subjectProliferação celular.por
dc.subjectAngiogênese patológica.por
dc.subjectImunoterapia.por
dc.subjectCélulas dendríticas.por
dc.subjectImmunotherapy.eng
dc.subjectBreast cancer.eng
dc.subjectDendritic cells.eng
dc.subjectTumor.eng
dc.subjectCell proliferation.eng
dc.subjectAngiogenesis.eng
dc.subject.cnpqImunologia Celularpor
dc.titleCaracterização do infiltrado celular, avaliação dos marcadores de densidade microvascular, (CD31, CD105) e marcador de proliferação celular (Ki-67) no câncer de mama 4T1 em camundongos tratados com vacina de células dendríticas, terapia com Interferon-alpha e trapia combinadapor
dc.typeTesepor
Appears in Collections:Programa de Pós-Graduação em Ciências da Saúde

Files in This Item:
File Description SizeFormat 
Tese Andre A R Aleixo.pdfTese Andre A R Aleixo1,68 MBAdobe PDFThumbnail

Download/Open Preview


This item is licensed under a Creative Commons License Creative Commons