Please use this identifier to cite or link to this item: http://bdtd.uftm.edu.br/handle/tede/773
Full metadata record
DC FieldValueLanguage
dc.creatorTAKEUTI, Tharsus Dias-
dc.creator.Latteshttp://lattes.cnpq.br/4907957039750937por
dc.contributor.advisor1CREMA, Eduardo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5607251543658902por
dc.contributor.advisor-co1RODRIGUES, Maria Laura Pinto-
dc.date.accessioned2019-07-19T14:58:09Z-
dc.date.issued2017-10-02-
dc.identifier.citationTAKEUTI, Tharsus Dias. Efeito da exposição à alteração de ph, palmitato de Sódio e glutamina em cultura de células intestinais na dosagem de peptídeos intestinais. 2017. 76f. Tese (Doutorado) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.por
dc.description.resumoINTRODUÇÃO: O estudo das células L vem sendo muito valorizado pelo potencial de produção de incretinas e peptídeos intestinais. O GLP-1 é a principal incretina produzida. OBJETIVO: avaliar a secreção de GLP-1 em células intestinais da linhagem HCT-8, quando são expostas às condições de alteração do pH, suplementação de glutamina e palmitato de sódio. METODOLOGIA: As células foram expostas às condições de pH 7,2 e estimuladas com glutamina, palmitato de sódio e submetidas a alteração do pH para 4,8, tendo os meios de cultura coletados em 15 (T0), 30 (T2) e 60 (T3) minutos para dosagem de GLP-1 e DHL. RESULTADOS: Quando comparados os tempos nas condições de pH observou-se uma concentração maior do hormônio em T2 comparado com o basal (p=0,02), podendo ser observado o mesmo comportamento com o estímulo de palmitato de sódio (p=0,04). Com o estímulo de glutamina não foram observadas diferenças significativas. CONCLUSÃO: Com base nos resultados, pode se sugerir que a alteração do pH assim como o estímulo com palmitato influencia na secreção de GLP-1, nas células HCT-8, observando-se uma concentração maior quando é comparado com o basal. O estímulo da glutamina, na concentração utilizada no trabalho, não se mostrou um potencializador da secreção do hormônio. Mais estudos devem ser realizados para que sejam comprovadas as teorias.por
dc.description.abstractINTRODUCTION: The study of L cells has been highly valued for their potential of production of intestinal incretins and peptides. GLP-1 is the main incretin produced. OBJECTIVE: To evaluate GLP-1 secretion in intestinal cells of the HCT-8 strain when exposed to pH alteration conditions, glutamine supplementation and sodium palmitate. METHODOLOGY: Cells were exposed to pH 7.2 and stimulated with glutamine, sodium palmitate and pH change for 4,8 and, the culture médium was collected at 15 (T0), 30 (T1) and 60 (T2) minutes for GLP-1 and DHL dosage. RESULTS: A higher concentration of the hormone was observed in T2 compared to baseline (p = 0,02) when compared to the pH conditions, the same behavior could be observed with the sodium palmitate stimulus (p = 0,04). With the glutamine stimulus, no significant differences were observed. CONCLUSION: Based on the results, it can be suggested that pH change as well as stimulation with palmitate influences the secretion of GLP-1 in HCT-8 cells, observing a higher concentration when compared to baseline. Glutamine stimulation, at the concentration used in the study, did not prove to be a potentiator of hormone secretion. Further studies must be carried out to prove the theories.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/5032/Tese%20Tharsus%20D%20Takeuti.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências da Saúdepor
dc.relation.referencesAFONSO, F. M.; SICHIERI, R. Associação do índice de massa corporal e da relação cintura/quadril com hospitalizações em adultos do Município do Rio de Janeiro, RJ. Rev Bras Epidemiol, v. 5, n. 2, p. 153–163, 2002. AKIBA, Y.; KAUNITZ, J. D. Duodenal chemosensing: Master control for epigastric sensation? Journal of Gastroenterology and Hepatology (Australia), v. 26, n. 1, p. 6–7, 2011. AMERICAN DIABETES ASSOCIARION. Diagnosis and classification of diabetes mellitus. Diabetes Care, v. 37, n. SUPPL.1, p. 81–90, 2014. AMERICAN DIABETES ASSOCIATION. Standards of Medical care in diabetes - 2017. The Journal of Clinical and Applied Research and Education, v. 40, n. January, p. 1–142, 2017. ATKINSON, M. A.; EISENBARTH, G. S.; AARON W MICHELS, M. Type 1 diabetes. Clinical chemistry, v. 383, n. 9911, p. 69–82, 2014. BAGGIO, L. L.; DRUCKER, D. J. Biology of Incretins : GLP-1 and GIP. p. 2131– 2157, 2007. BALDUCCI, S. et al. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews, v. 30, n. 1, p. 13–23, 2014. BAST, A. et al. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia, v. 45, n. 6, p. 867–876, 2002. BLUESTONE, J. A.; HEROLD, K.; EISENBARTH, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, v. 464, n. 7293, p. 1293–1300, 2010. BUDIN, S. B. et al. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocininduced diabetic rats. Clinics (São Paulo, Brazil), v. 64, n. 3, p. 235–44, 2009. CAHILL, F. et al. The association of serum total peptide YY (PYY) with obesity and body fat measures in the coding study. PLoS ONE, v. 9, n. 4, 2014. CARVALHO, E.; RABELO, J. Identificação, prevenção e tratamento dos fatores de riscos associados à síndrome metabólica em pacientes atendidos no programa integrado de atividade física, esporte e lazer para todos os servidores da ufv campus florestal: estudo piloto – piafel-ep. … Revista Digital FAPAM, Pará de Minas, v. 1, n. 1, p. 355–366, 2009. CERIELLO, A.; MOTZ, E. Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes, and Cardiovascular Disease? The Common Soil Hypothesis Revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, v. 24, n. 5, p. 816–823, 2004. CHANDARANA, K. et al. Diet and gastrointestinal bypass-induced weight loss: The roles of ghrelin and peptide YY. Diabetes, v. 60, n. 3, p. 810–818, 2011. CLARKE, P. M. et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: A multicountry comparative analysis. PLoS Medicine, v. 7, n. 2, 2010. CRUZAT, V. F.; PETRY, É. R.; TIRAPEGUI, J. Glutamina: Aspectos bioquímicos, metabólicos, moleculares e suplementação. Revista Brasileira de Medicina do Esporte, v. 15, n. 5, p. 392–397, 2009. D ’ADAMO, E.; CAPRIO, S. Type 2 Diabetes in Youth: Epidemiology and Pathophysiology. Diabetes Care, v. 34, n. Supplement 2, p. S161–S165, 2011. DAFOULAS, G. E. et al. Type 1 diabetes mellitus and risk of incident epilepsy: a population-based, open-cohort study. Diabetologia, v. 60, n. 2, p. 258–261, 2017. DANEMAN, D. Type 1 diabetes. The Lancet, v. 367, n. 9513, p. 847–858, 2006. DAVY, A. et al. Purification and characterization of barley dipeptidyl peptidase IV. Plant physiology, v. 122, n. 2, p. 425–32, 2000. DEACON, C. F. What do we know about the secretion and degradation of incretin hormones? Regulatory Peptides, v. 128, n. 2, p. 117–124, 2005. DEY, L.; ATTELE, A. S.; YUAN, C.-S. Alternative therapies for type 2 diabetes. Alternative medicine review : a journal of clinical therapeutic, v. 7, n. 1, p. 45– 58, 2002. DIABETES PREVENTION TRIAL--TYPE 1 DIABETES STUDY GROUP. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med, v. 346, n. 22, p. 1685–1691, 2002. DIEPVENS, K. et al. Long-term effects of consumption of a novel fat emulsion in relation to body-weight management. International Journal of Obesity, v. 31, p. 942–949, 2007. EBERT, R.; ILLMER, K.; CREUTZFELDT, W. Release of Gastric Inhibitory Polypeptide (GIP) by Intraduodenal Acidification in Rats and Humans and Abolishment of the Incretin Effect of Acid by GIP-Antiserum in Rats. Gastroenterology, v. 76, n. 3, p. 515–523, 1979. GELONEZE, B.; PAREJA, J. C. Cirurgia bariátrica cura a síndrome metabólica? Arquivos Brasileiros de Endocrinologia & Metabologia, v. 50, n. 2, p. 400–407, 2006. GIL-LOZANO, M. et al. High-fat diet and palmitate alter the rhythmic secretion of glucagon-like peptide-1 by the rodent L-cell. Endocrinology, v. 157, n. 2, p. 586– 599, 2016. GILLESPIE, K. M. Type 1 diabetes: pathogenesis and prevention. CMAJ : Canadian Medical Association journal = journal de l’Association medicale canadienne, v. 175, n. 2, p. 165–70, 2006. GREENFIELD, J. R. et al. Oral glutamine increases circulating glucagon-like peptide 1 , glucagon , and insulin concentrations in lean , obese , and type 2 diabetic subjects 1 – 4. The American journal of clinical nutrition, v. 1, p. 106–113, 2009. GREINER, T. U.; BÄCKHED, F. Microbial regulation of GLP-1 and L-cell biology. Molecular Metabolism, v. 5, n. 9, p. 753–758, 2016. GRIBBLE, F. M.; REIMANN, F. Signalling in the gut endocrine axis. Physiology and Behavior, v. 176, p. 183–188, 2017. GROSS, J. L. et al. Diabetes Melito: Diagnóstico, Classificação e Avaliação do Controle Glicêmico. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 46, n. 1, p. 16–26, 2002. GUNAWARDENE, A. R.; CORFE, B. M.; STATON, C. A. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. International Journal of Experimental Pathology, v. 92, n. 4, p. 219–231, 2011. HANSOTIA, T.; DRUCKER, D. J. GIP and GLP-1 as incretin hormones: Lessons from single and double incretin receptor knockout mice. Regulatory Peptides, v. 128, n. 2, p. 125–134, 2005. HAYASHI, H. et al. Glucagon-like peptide-1 production in the GLUTag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism: Clinical and Experimental, v. 63, n. 6, p. 800–811, 2014. INZUCCHI, S. E. et al. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a position statement of the american diabetes association and the european association for the study of diabetes. Diabetes Care, v. 38, n. 1, p. 140–149, 2015. JOHANSSON, I. et al. Prognostic Implications of Type 2 Diabetes Mellitus in Ischemic and Nonischemic Heart Failure. Journal of the American College of Cardiology, v. 68, n. 13, p. 1404–1416, 2016. JOO, E. et al. Enteral supplementation with glutamine, fiber, and oligosaccharide modulates incretin and glucagon-like peptide-2 secretion. Journal of Diabetes Investigation, v. 6, n. 3, p. 302–308, 2015. JOSHI, S.; TOUGH, I. R.; COX, H. M. Endogenous PYY and GLP-1 mediate l - glutamine responses in intestinal mucosa. British Journal of Pharmacology, v. 170, n. 5, p. 1092–1101, 2013. KAHN, S. E.; COOPER, M. E.; DEL PRATO, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. The Lancet, v. 383, n. 9922, p. 1068–1083, 2014. KANG, Z. F. et al. Pharmacological reduction of NEFA restores the efficacy of incretin-based therapies through GLP-1 receptor signalling in the beta cell in mouse models of diabetes. Diabetologia, v. 56, n. 2, p. 423–433, 2013. KARRA, E.; CHANDARANA, K.; BATTERHAM, R. L. The role of peptide YY in appetite regulation and obesity. The Journal of physiology, v. 587, n. 1, p. 19–25, 2009. KASHYAP, S. R. et al. Bariatric surgery for type 2 diabetes: Weighing the impact for obese patients. Cleveland Clinic Journal of Medicine, v. 77, n. 7, p. 468–476, 2010. KASSI, E. et al. Metabolic syndrome: definitions and controversies. BMC medicine, v. 9, n. 1, p. 48, 2011. KERNER, W.; BRÜCKEL, J. Classification And Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, v. 122, n. 7, p. 2–4, 2010. KOIVUSALO, S. B. et al. Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL): A Randomized Controlled Trial. Diabetes Care, v. 39, n. 1, p. 24–30, 2016. LEY, S. H. et al. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet (London, England), v. 383, n. 9933, p. 1999– 2007, 2014. LIEVIN-LE MOAL, V.; SERVIN, A. L. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines. Microbiology and Molecular Biology Reviews, v. 77, n. 3, p. 380–439, 2013. LIM, G. E. et al. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology, v. 150, n. 2, p. 580–591, 2009. LOTTENBERG, S. A.; GLEZER, A.; TURATTI, L. A. Metabolic syndrome: identifying the risk factors. Jornal de pediatria, v. 83, n. 5 Suppl, p. S204-8, 2007. MANADAS, R.; PINA, M. E.; VEIGA, F. A dissolução in vitro na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada. Revista Brasileira de Ciências Farmacêuticas, v. 38, n. 4, p. 375–399, 2002. MEEK, C. L. et al. The effect of encapsulated glutamine on gut peptide secretion in human volunteers. Peptides, v. 77, p. 38–46, 2016. MERCURI, N.; ARRECHEA, V. Diabetes mellitus e atividade física Atividade física e diabetes mellitus. Diabetes Clínica, v. 5, n. 2, p. 347–349, 2001. MINGRONE, G. et al. Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre,. The Lancet, v. 386, 2015. NAUCK, M. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes, Obesity and Metabolism, v. 18, n. 3, p. 203–216, 2016. NOLAN, C. J.; DAMM, P.; PRENTKI, M. Type 2 diabetes across generations: From pathophysiology to prevention and management. The Lancet, v. 378, n. 9786, p. 169–181, 2011. OLIVÁN, B. et al. Effect of Weight Loss by Diet or Gastric Bypass Surgery on Peptide YY3–36 Levels. v. 249, n. 6, p. 948–953, 2009. OLIVEIRA, J. E. P. DE; MILECH, A. Diabetes Mellitus Clínica, Diagnóstico Tratamento Multidisciplinar. In: Diabetes Mellitus Clínica, Diagnóstico Tratamento Multidisciplinar. [s.l: s.n.]. v. 1p. 77–98. OYAMA, J.-I.; HIGASHI, Y.; NODE, K. Do incretins improve endothelial function? Cardiovascular diabetology, v. 13, p. 21, 2014. PEIXOTO, G. V.; SILVA, R. M. DA. Estratégias Educativas ao Portador de Diabetes Mellitus: Revisão Sistemática. Artigo, v. 13, n. 1, p. 74–81, 2011. PEREIRA-LANCHA, L. O.; CAMPOS-FERRAZ, P. L.; LANCHA, A. H. Obesity: Considerations about etiology, metabolism, and the use of experimental models. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, v. 5, p. 75– 87, 2012. PEYOT, M. L. et al. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic ??-cells. PLoS ONE, v. 4, n. 7, 2009. PHAM, H. et al. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells. Biochemical and Biophysical Research Communications, v. 475, n. 3, p. 295–300, 2016. RAFFERTY, E. P. et al. In vitro and in vivo effects of natural putative secretagogues of Glucagon-like peptide-1 (GLP-1). Scientia Pharmaceutica, v. 79, n. 3, p. 615– 621, 2011. RAJAGOPALAN, K. N.; DEBERARDINIS, R. J. Role of Glutamine in Cancer – Therapeutic and Imaging Implications. J Nucl Med, v. 52, n. 7, p. 1005–1008, 2012. RAMRACHEYA, R. D. et al. PYY-Dependent Restoration of Impaired Insulin and Glucagon Secretion in Type 2 Diabetes following Roux-En-Y Gastric Bypass Surgery. Cell Reports, v. 15, n. 5, p. 944–950, 2016. REIMANN, F. et al. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia, v. 47, n. 9, p. 1592–1601, 2004. REIMANN, F. et al. Glucose Sensing in L Cells: A Primary Cell Study. Cell Metabolism, v. 8, n. 6, p. 532–539, 2008. RUBINO, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of surgery, v. 244, n. 5, p. 741–9, 2006. SALINARI, S. et al. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in goto-kakizaki diabetic rats without changes in incretins or insulin secretion. Diabetes, v. 63, n. 3, p. 1069–1078, 2014. SEINO, Y.; KUWATA, H.; YABE, D. Incretin-based drugs for type 2 diabetes: Focus on East Asian perspectives. Journal of Diabetes Investigation, v. 7, n. April, p. 102–109, 2016. SELPH, S. et al. Screening for type 2 diabetes mellitus: a systematic review for the U.S. Preventive Services Task Force. Annals of internal medicine, v. 162, n. 11, p. 765–76, 2015. SHAW, J. E.; SICREE, R. A.; ZIMMET, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, v. 87, n. 1, p. 4–14, 2010. SOCIEDADE BRASILEIRA DE DIABETES. Diretrizes Sociedade Brasileira de Diabetes. [s.l: s.n.]. v. 5 STERNINI, C.; ANSELMI, L.; ROZENGURT, E. Enteroendocrine cells: a site of “taste” in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes and Obesity, v. 15, n. 1, p. 73–78, 2008. SWEENEY, T. E.; MORTON, J. M. HHS Public Access. Best Pract Res Clin Gastroenterol, v. 28, n. 4, p. 727–740, 2014. TAKEUTI, T. D. et al. Effect of the ingestion of the palm oil and glutamine in serum levels of glp-1 , pyy and glycemia in diabetes. ABCD. Arquivos brasileiros de cirurgia digestiva, v. 27, n. 1, p. 51–55, 2014. TANWEER, D. S. et al. Type-2 Diabetes Mellitus; Frequency of Microalbuminuria in Patients Having Diabetic Retinopathy in Nishter Hospital Multan. the Professional Medical Journal, v. 23, n. 11, p. 1390–1394, 2016. TASYUREK, H. M. et al. Incretins: Their physiology and application in the treatment of diabetes mellitus Hale. Diabetes/Metabolism Research and Reviews, v. 30, n. 5, p. 354–371, 2014. TOLHURST, G. et al. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+and cAMP. Endocrinology, v. 152, n. 2, p. 405– 413, 2011. TRABELSI, M.-S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, v. 6, n. May, p. 7629, 2015. VASU, S. et al. Differential molecular and cellular responses of GLP-1 secreting Lcells and pancreatic alpha cells to glucotoxicity and lipotoxicity. Experimental Cell Research, v. 336, n. 1, p. 100–108, 2015. WYNNE, K.; BLOOM, S. R. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nature clinical practice. Endocrinology & metabolism, v. 2, n. 11, p. 612–20, 2006. YABE, D.; SEINO, Y. Two incretin hormones GLP-1 and GIP: Comparison of their actions in insulin secretion and ?? cell preservation. Progress in Biophysics and Molecular Biology, v. 107, n. 2, p. 248–256, 2011. YI, B.; HUANG, G.; ZHOU, Z. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus. Journal of Diabetes Investigation, v. 7, n. 4, p. 459–465, 2016. ZHANG, J. S. et al. Tocotrienol-Rich Fraction (TRF) suppresses the growth of human colon cancer xenografts in Balb/C nude mice by the Wnt pathway. PLoS ONE, v. 10, n. 3, p. 1–15, 2015. ZIEGLER, F. et al. Effects of l-glutamine supplementation alone or with antioxidants on hydrogen peroxide-induced injury in human intestinal epithelial cells. e-SPEN, v. 6, n. 4, p. e211–e216, 2013.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectIncretina.por
dc.subjectGLP-1.por
dc.subjectGlutamina.por
dc.subjectPalmitato.por
dc.subjectIncretin.eng
dc.subjectGLP-1.eng
dc.subjectGlutamine.eng
dc.subjectPalmitate.eng
dc.subject.cnpqCiências da Saúdepor
dc.titleEfeito da exposição à alteração de ph, palmitato de Sódio e glutamina em cultura de células intestinais na dosagem de peptídeos intestinaispor
dc.title.alternativeEffect of exposure to change of ph, sodium palmitate and glutamine in culture of intestinal cells in the dosage of intestinal peptideeng
dc.typeTesepor
Appears in Collections:Programa de Pós-Graduação em Ciências da Saúde

Files in This Item:
File Description SizeFormat 
Tese Tharsus D Takeuti.pdfTese Tharsus D Takeuti1,46 MBAdobe PDFThumbnail

Download/Open Preview


This item is licensed under a Creative Commons License Creative Commons