

MINISTÉRIO DA EDUCAÇÃO

Universidade Federal do Triângulo Mineiro Mestrado Acadêmico em Ciências dos Materiais

DANILO MELLE DE PROENÇA

ESTUDOS DFT E NBO VOLTADOS PARA O POTENCIAL ANTIOXIDANTE DOS CURCUMINOIDES DA CURCUMA LONGA L

UBERABA-MG 2023

MINISTÉRIO DA EDUCAÇÃO

Universidade Federal do Triângulo Mineiro Mestrado Acadêmico em Ciências dos Materiais

DANILO MELLE DE PROENÇA

ESTUDOS DFT E NBO VOLTADOS PARA O POTENCIAL ANTIOXIDANTE DOS CURCUMINOIDES DA CURCUMA LONGA L.

Dissertação apresentada ao Programa de Pós-Graduação em Ciências e Tecnologia de Materiais, área de concentração Produtos Naturais e Sintéticos Bioativos, da Universidade Federal do Triângulo Mineiro, como requisito parcial para obtenção do título de Mestre de Ciências

Orientador Dr. Odonírio Abrahão Junior

UBERABA-MG 2023

Catalogação na fonte: Biblioteca da Universidade Federal do Triângulo Mineiro

٦

P957e	Proença, Danilo Melle de Estudos DFT e NBO voltados para o potencial antioxidante dos curcuminoides da cúrcuma longa / Danilo Melle de Proença. – 2023. 153 f. : il., graf., tab.	
	Dissertação (Mestrado em Ciência e Tecnologia de Materiais) Universidade Federal do Triângulo Mineiro, Uberaba, MG, 2023 Orientador: Prof. Dr. Odonírio Abrahão Junior	
	1. Cúrcuma. 2. Antioxidantes. 3. Radicais livres (Química). I. Abrahão Junior, Odonírio. II. Universidade Federal do Triângulo Mineiro. III. Título.	
	CDU 547.979.4	

Eduardo Caetano Leal - CRB-6/2200

I.

DANILO MELLE DE PROENÇA

Estudos DFT e NBO voltados para o potencial antioxidante dos curcuminoides da curcuma longa.

Dissertação apresentada ao Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, área de concentração - Produtos Naturais e Sintéticos Bioativos, da Universidade Federal do Triângulo Mineiro como requisito parcial para obtenção do título de mestre.

Uberaba-MG, 10 de agosto de 2023

Banca Examinadora:

Professor Dr. Odonirio Abrahão Junior - Orientador Universidade Federal do Triângulo Mineiro

Professor Dr. Pedro Ivo Maia Universidade Federal do Triângulo Mineiro

Professor Dr. Guedmiller Souza de Oliveira Universidade Federal de Uberlândia

Documento assinado eletronicamente por **ODONIRIO ABRAHAO JUNIOR**, **Professor do Magistério Superior**, em 16/08/2023, às 15:03, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto</u> <u>nº 10.543, de 13 de novembro de 2020</u> e no art. 34 da <u>Portaria Reitoria/UFTM nº 165, de 16 de junho de 2023</u>.

Documento assinado eletronicamente por **Guedmiller Souza de Oliveira**, **Usuário Externo**, em 16/08/2023, às 16:05, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de</u> <u>novembro de 2020</u> e no art. 34 da <u>Portaria Reitoria/UFTM nº 165, de 16 de junho de 2023</u>.

Documento assinado eletronicamente por **PEDRO IVO DA SILVA MAIA**, **Professor do Magistério Superior**, em 31/08/2023, às 14:36, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u> e no art. 34 da <u>Portaria Reitoria/UFTM nº 165, de 16 de junho de 2023</u>.

A autenticidade deste documento pode ser conferida no site <u>http://sei.uftm.edu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **1062811** e o código CRC **D894E0CD**.

AGRADECIMENTOS

Chegar até a presente finalização desta trajetória foi desafiador, um caminho de muitos desafios, alegrias, tristezas, incertezas, mas Deus sempre esteve presente comigo ao meu lado, por isso venho agradecer primeiramente a Ele que me permitiu chegar até aqui concluindo mais uma etapa de minha vida.

Trilhar este caminho só foi possível através de outras pessoas também que estiveram comigo e que torceram, por isso venho agradecer a minha família, sendo minha esposa Lucinete Ribeiro Nascimento de Proença, minha mãe Tânia Aparecida Alves Melle de Proença e minha filha Myrian Nascimento de Proença que me apoiou de forma incondicional. Venho agradecer também, alguém que com muita paciência e empenho, me orientou neste trabalho, acreditou e confiou em mim, o meu professor orientador Dr. Odonírio Abrahão Júnior.

Agradeço os técnicos de laboratório Rhéltheer de Paula Martins e Geraldo Garcia de Freitas Junior, que tiveram a disponibilidade para o acesso ao laboratório de Modelagem Molecular, aos professores Karina Ferrazzoli Devienne Vicentine, Pedro Ivo da Silva Maia e Roseli Aparecida da Silva Gomes que participaram da banca de qualificação da presente dissertação, pois contribuíram imensamente com suas correções, considerações e também ao apresentarem as muitas possibilidades que o projeto possui, o que me ajudou a acreditar ainda mais no potencial da pesquisa e na sua contribuição para a comunidade acadêmica. E ao professor Guedmiller Souza de Oliveira na banca da defesa.

Agradeço ao MEC e à CAPES por fomentar meus estudos no mestrado, e à UFTM pelos laboratórios e excelência e pelas aulas. A todos vocês, saibam que de alguma maneira contribuíram para que esse trabalho saísse. Obrigado mais uma vez a todos.

"A natureza proporciona ao homem uma infinidade de plantas com valores medicinais". Naraiamat Surui

RESUMO

Há muitos anos o açafrão da terra (Curcuma longa L) é utilizado como planta medicinal, por ter propriedades antioxidante, anti-inflamatória, antibacteriana, anticarninogênica, entre outras. Três moléculas de polifenóis se destacam: a curcumina (CUR), a demetoxicurcumina (DMC) e a bisdemetoxicurcumina (BDMC), sendo que somente a primeira é amplamente estudada por demonstrar grandes guantidades no rizoma da planta. O laboratório de pesquisas, o LQCM/UFTM, descobriu que a Curcuma longa L. da região do cerrado mineiro em Uberaba possui uma maior quantidade de BDMC e DMC e iniciou estudos a fim de diferenciar melhor as propriedades moleculares que se relacionam com a atividade antioxidante destes três curcuminoides. O método DFT foi utilizado a partir do funcional M06-2X com funcões de base 6-311++(2d,p) foram realizados análises de suas formas radicalares e desprotonadas, cada molécula foi submetida no vácuo, água (meio polar) e etanoato de etila (meio apolar). Os resultados encontrados para a CUR mostraram boa concordância determinada com outros estudos e metodologias. A BDMC apresentou grande semelhança com a CUR, com algumas características diferenciadas, tais como uma maior capacidade de transferência de carga, de acordo com o estudo de deslocalização eletrônica NBO, maior solubilidade em água, mas semelhantes em etanoato de etila, usado como modelo de solvente apolar para emular vesículas de fosfolipídios ou membranas celulares. Desta forma a BDMC demonstrou características diferentes da CUR que podem ser exploradas na administração de tratamentos médicos. A molécula é totalmente planar apresenta maior deslocalização eletrônica e conseguentemente, maior estabilidade nos dois meios de um sistema bifásico. A propósito, o BDMC é um ácido fraco que pode se dissociar em meio aquoso para produzir um par ácidobase iônico em pH fisiológico, BDMC exibiu os menores valores de logP nos estados neutro, protonado e desprotonado. Os mecanismos HAT e ET-PT levam à formação dos mesmos produtos, denominados aqui como radicais BDMC. Estes são mais hidrofóbicos do que o radical cátion, porque um radical livre é uma forma neutra. Em contraste, o radical cátion BDMC, a outra possível forma estável de BDMC, é formado pelo mecanismo de reação ET ou como um intermediário no mecanismo ET-PT. No caso do BDMC, quando exposto a um pH abaixo de 6, a forma protonada é favorecida, sugerindo que essa molécula pode permear as membranas celulares. A forma desprotonada é favorecida se os curcuminóides forem submetidos a um pH superior a 9,6, sugerindo que esta molécula provavelmente irá permear no meio aguoso.

Palavras Chave: antioxidante, curcumina, demetoxicurcumina, bisdemetoxicurcumina, açafrão da terra

ABSTRACT

For many years, saffron (Curcuma longa L) has been used as a medicinal plant, consequence of it antioxidant, anti-inflammatory, antibacterial. as а anticarnogenic properties, among others. Among three polyphenol molecules highlight: curcumin (CUR). demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), the first is widely studied due to the present in plant rhizome. The LQCM/UFTM, has discovered that Curcuma longa L. from the cerrado region of Minas Gerais in Uberaba has a higher amount of BDMC and DMC. Therefore we have investigated such distinguished molecular properties which are related to the antioxidant activity of these three curcuminoids. The DFT method was used from the functional M06-2X with base functions 6-311++(2d,p) Analyzes of their radical and deprotonated forms were carried out, each molecule was submitted to vacuum, water (polar medium) and ethanoate of ethyl (apolar medium). Results showed for the CUR showed good agreement with other studies and methodologies. BDMC showed great similarity with CUR, with some differentiated characteristics, such as a greater charge transfer capacity, according to the NBO electronic delocalization study, greater solubility in water, but similar in ethyl ethanoate, used as a model of non-polar solvent to emulate phospholipid vesicles or cell membranes. This way, BDMC demonstrated different characteristics from CUR that can be explored in the administration of medical treatments. The molecule is completely planar and presents greater electronic displacement and, consequently, greater stability in the two media of a biphasic system. Incidentally, BDMC is a weak acid that can dissociate in aqueous media to produce an ionic acid-base at physiological pH, BDMC exhibits the lowest logP values in neutral, protonated, and deprotonated states. HAT and ET-PT switches lead to the formation of the same products, named here as BDMC radicals. These are more hydrophobic than the radical cation because a free radical is a neutral form. In contrast, the radical cation BDMC, the other possible stable form of BDMC, is formed by the ET reaction mechanism or as an intermediate in the ET-PT mechanism. In the case of BDMC, when exposed to a pH below 6, the protonated form is favored, suggesting that this molecule can permeate cell membranes. The deprotonated form is favored if curcuminoids are manifested at a pH greater than 9.6, suggesting that this molecule is likely to permeate into the aqueous medium.

Keywords: antioxidant, curcumin, demethoxycurcumin, bisdemethoxycurcumin, turmerico.

LISTA DE FIGURAS

Figura 1 - Vista Geral da parte aérea de Curcuma longa
Figura 2 Partes do rizoma de Curcuma longa que formam a estrutura 'mão'18
Figura 3 Principais usos etnofarmacológicos descritos para os rizomas de C. longa. 20
Figura 4 Número de citações das principais atividades in vitro demonstradas para droga
vegetal e derivados de C. longa, bem como para substâncias isoladas da planta e
produtos comerciais20
Figura 5 Componentes químicos dos curcuminoides : CUR, DMC e BDMC21
Figura 6 - Cromatograma de HPLC22
Figura 7 Estrutura dos CM's23
Figura 8 Ciclo Termodinâmico usado no cálculo de pKa33
Figura 9 - Estrutura química da CUR enólica com os átomos rotulados
Figura 10 - Estrutura química da DMC enólica com os átomos rotulados
Figura 11 - Estrutura química da BDMC enólica com os átomos rotulados40
Figura 12 - Mecanismo antioxidante dos CM's envolvendo a doação de hidrogênio pelo
fenol e a representação da estabilização do radical formado por ressonância50
Figura 13 - Mecanismo antioxidante dos CM's envolvendo a doação de hidrogênio pelo
enol e a representação da estabilização do radical formado por ressonância51
Figura 14 - Locais de possíveis rupturas CM's52
Figura 15 - Fragmentos CUR53
Figura 16 - Fragmentos BDMC54
Figura 17 - Densidade de Spin da BDMC e de suas formas radicalares e protonadas 55
Figura 18 - Análise de probabilidade de acoplamento nos CM's56
Figura 19 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR
no vácuo (metodologia m062X/6-311++G(2d,p)62
Figura 20 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC
no Vácuo (metodologia m062X/6-311++G(2d,p)63
Figura B 1 - Análise NBO da deslocalização de carga na CUR111
Figura B 2 - Análise NBO da deslocalização de carga na DMC112
Figura B 3 - Análise NBO da deslocalização de carga na BDMC113
Figura C 1 - Densidade de Spin da CUR e de suas formas radicalares e protonadas
Figura C 2 - Densidade de Spin da DMC e de suas formas radicalares e protonadas

Figura C 3 - Densidade de Spin da BDMC e de suas formas radicalares e protonadas Figura E 4 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR no vácuo (metodologia m062X/6-311++G(2d,p)134 Figura E 5 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR na Água (metodologia m062X/6-311++G(2d,p)......134 Figura E 6 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR Figura E 7 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da DMC no Vácuo (metodologia m062X/6-311++G(2d,p)......135 Figura E 8 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da DMC na Água (metodologia m062X/6-311++G(2d,p).....136 Figura E 9 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da DMC Figura E 10 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC no Vácuo (metodologia m062X/6-311++G(2d,p)137 Figura E 11 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC na Água (metodologia m062X/6-311++G(2d,p)137 Figura E 12 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC em Etanoato de etila (metodologia m062X/6-311++G(2d,p)......138 Figura E 13 - FMO da CUR neutra e de suas formas radicalares e protonadas, Figura E 14 - FMO da CUR neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p) em água140 Figura E 15 - FMO da CUR neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p) em etanoato de etila de etila...... 141 Figura E 16 - FMO da DMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p) no vácuo......142 Figura E 17 - FMO da DMC neutra e de suas formas radicalares e protonadas, Figura E 18 - FMO da DMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p) em etanoato de etila de etila......144 Figura E 19 - FMO da BDMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p) no vácuo......145

Figura E 20 - FMO da BDMC neutra e de suas formas radicalares e protonadas,	
utilizando metodologia e M062X/6-311++G(2d,p) em água	146
Figura E 21 - FMO da BDMC neutra e de suas formas radicalares e protonadas,	
utilizando metodologia e M062X/6-311++G(2d,p) em etanoato de etila de etila	147
Figura F 1 - UV-VIS CUR	148
Figura F 2 - UV-VIS DMC	148
Figura F 3 - UV-VIS BDMC	148
Figura F 4 - Spectro IR - CUR neutra no vácuo	149
Figura F 5 - Spectro IR - CUR-Enolato no vácuo	149
Figura F 6 - Spectro IR - CUR-fenolato no vácuo	149
Figura F 7 - Spectro IR - DMC neutra no vácuo	150
Figura F 8 - Spectro IR - DMC-Enolato no vácuo	150
Figura F 9 - Spectro IR - DMC-fenolato no vácuo	150
Figura F 10 - Spectro IR - BDMC neutra no vácuo	151
Figura F 11 - Spectro IR - BDMC-Enolato no vácuo	151
Figura F 12 - Spectro IR - BDMC-fenolato no vácuo	152

LISTA DE TABELAS

Tabela 1 Variação dos comprimentos de ligação obtidos pelo método de M06-2X/6-
311++(2d,p) maior que 0,1 A41
Tabela 2 Variação dos ângulos de ligação obtidos pelo método de M06-2X/6-
311++(2d,p) (em graus)
Tabela 3 Comparação dos valores LP dos átomos de oxigênio
Tabela 4 Comparação das carga NPA para os átomos de oxigênios LP's
Tabela 5 Comparação momento dipolo 58
Tabela 6 Comparação dos valores de pKa dos CM's59
Tabela 7 Comparativo da fração de transferência de elétrons 60
Tabela 8 Valores de cLogP dos CM's 66
Tabela A 1 - Comparativo do Comprimento de Ligação (Å) metodologia com
experimental
Tabela A 2 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos
pelo método de M06-2X/6-311++(2d,p) para CUR. (em A)81
Tabela A 3 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos
pelo método de M06-2X/6-311++(2d,p) para DMC. (em A)83
Tabela A 4 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos
pelo método de M06-2X/6-311++(2d,p) para BDMC. (em A)84
Tabela A 5 - Comparativo do Ângulo de Ligação (º) metodologia com experimental 85
Tabela A 6 - Resultados M06-2X/6-311(2d,p) - parâmetros geométricos selecionados
ângulos CUR (em graus)
Tabela A 7 - Resultados M06-2X/6-311(2d,p) - parâmetros geométricos selecionados
ângulos DMC (em graus)87
Tabela A 8 - Resultados M06-2X/6-311(2d,p) - parâmetros geométricos selecionados
ângulos BDMC (em graus)
Tabela A 9 - Carga CHELPG atômicas (a.u.) calculadas para a estrutura CUR neutra e
de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-
311++G(2d,p)
Tabela A 10 - Carga CHELPG atômicas (a.u.) calculadas para a estrutura DMC neutra
e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-
311++G(2d,p)

Tabela A 11 - Carga CHELPG atômicas (a.u.) calculadas para a estrutura BDMC neutra
e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-
311++G(2d,p)
Tabela A 12 - Variação de Carga - CUR95
Tabela A 13 - Variação de Carga - DMC97
Tabela A 14 - Variação de Carga - BDMC98
Tabela B 1 - Análise de ligação e antiligação NBO de CUR101
Tabela B 2 - Análise de ligação e antiligação NBO de DMC102
Tabela B 3 - Análise de ligação e antiligação NBO de BDMC104
Tabela B 4 - Análise de teoria de perturbação de segunda ordem selecionada da matriz
Fock em base NBO de CUR 105
Tabela B 5 - Análise de teoria de perturbação de segunda ordem selecionada da matriz
Fock em base NBO de DMC108
Tabela B 6 - Análise de teoria de perturbação de segunda ordem selecionada da matriz
Fock em base NBO de BDMC 110
Tabela B 7 - CARGA NBO da CUR – Método M02X-6-31++G(d,p).Valores em [e] 114
Tabela B 8 - CARGA NBO da DMC – Método M02X-6-31++G(d,p).Valores em [e] 114
Tabela B 9 - CARGA NBO da BDMC - Método M02X-6-31++G(d,p).Valores em [e].
Tabela B 10 - Ordem de Ligação - NBO - CUR115
Tabela B 11 - Ordem de Ligação - NBO - DMC (em A)116
Tabela B 12 - Ordem de Ligação - NBO - CUR (em A)116
Tabela C 1 - Valores de Densidade de Spin CUR118
Tabela C 2 - Valores de Densidade de Spin DMC119
Tabela C 3 - Valores de Densidade de Spin BDMC 121
Tabela D 1 - Funções termodinâmicas da CUR e de suas formas radicalares e
protonadas, usando método DFT M06-2X/6-311++G(d,p) nos diferentes meios sob
T=298,15K e P=1atm. (em Kcal/mol)
Tabela D 2 - Funções termodinâmicas da DMC e de suas formas radicalares e
protonadas, usando método DFT M06-2X/6-311++G(d,p) nos diferentes meios sob
T=298,15K e P=1atm. (em Kcal/mol)
Tabela D 3 - Funções termodinâmicas da BDMC e de suas formas radicalares e
protonadas, usando método DFT M06-2X/6-311++G(d,p) nos diferentes meios sob
T=298,15K e P=1atm. (em Kcal/mol)
Tabela E 1 - Valores momento para a estrutura CUR e de suas formas radicalares e
protonadas, utilizando metodologia e M062X/6-311++G(2d,p)125

Tabela E 2 - Valores momento para a estrutura DMC e de suas formas radicalares e Tabela E 3 - Valores momento para a estrutura BDMC e de suas formas radicalares e Tabela E 4 - Parâmetros químicos de reatividade quântica para CUR usando método DFT M06-2X/6–311++G(d,p) no vácuo......125 Tabela E 5 - Parâmetros químicos de reatividade quântica para DMC usando método DFT M06-2X/6–311++G(d,p) no vácuo.....126 Tabela E 6 - Parâmetros químicos de reatividade quântica para BDMC usando método DFT M06-2X/6–311++G(d,p) no vácuo......126 Tabela E 7 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura CUR neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p). 130 Tabela E 8 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura DMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p). 131 Tabela E 9 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura BDMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p). Tabela F 1 - Frequência CUR152 Tabela F 2 - Frequência DMC......152

Tabela F 3 - Frequência BDMC153

LISTA DE EQUAÇÕES

Equação 1 Potencial de Ionização	29
Equação 2 Eletroafinidade	29
Equação 3 Dureza	29
Equação 4 Eletronegatividade	29
Equação 5 Dureza Química	29
Equação 6 Maciez	29
Equação 7 Índice de eletrofilicidade global	29
Equação 8 equilíbrio entre o ácido e a água	33
Equação 9 equação de ΔG sol	33
Equação 10 equação de pKa	33
Equação 12 Fator de correção de pKa,	33

LISTA DE SIGLAS

a.u	unidade atômica		
BD	bonding orbital (orbital ligante)		
BD*	anti bonding orbital (orbital anti-ligante)		
BDMC	bisdemetoxicurcumina		
СМ	curcuminóide		
CR	cátion radical		
CUR	curcumina		
delta H	variação entalpia		
delta S	variação entropia		
DMC	demetoxicurcumina		
e.V	elétron volts		
EE	Etanoato de etila		
ENOL-RAD	enol radical		
EROs	Espécies Reativas de Oxigênio		
ET	Electron Transfer (eletron transferencia)		
ET-PT	Electron Transfer followed by Proton Transfer (elétron transferência		
	seguida pela transferência de próton)		
FENOL-RAD	fenol radical		
FMO	orbitais moleculares de fronteira		
G	energia livre de Gibbs		
HAT	Hydrogen Atom Transfer (transferência átomo de hidrogênio)		
НОМО	Highest Occupied Molecular Orbital (orbital molecular ocupado mais alto)		
IR	infravermelho		
logP	medida de absorção de fármacos através das membranas celulares		
LP	lone pair (par solitário)		
LP*	anti-bonding character of lone pair (antiligação par solitário)		
LUMO	Lowest Unoccupied Molecular Orbital(orbital molecular desocupado		
	mais baixo)		
MEP	Molecular Electrostatic Potential (Potencial Molecular Eletrostático)		
МО	Molecular Orbitals (orbital molecular)		
NBO	Natural Bond Orbital (Análise Orbital de Ligação Natural)		
NPA	Natural Population Analysis (Análise de População Natural)		

ОН	hidroxila
pН	Potencial Hidrogeniônico
рКа	constante de dissociação de um ácido
SOMO	Singly Occupied Molecular Orbital (orbital molecular ocupado
	individualmente)
UV-VIS	ultravioleta visível
vac	vácuo

SUMÁRIO

1. INTRODUÇÃO		
1.1. A cúrcuma e	os curcuminoides	
1.1.1 Curcuma long	ga L. e a Medicina	
1.1.2. Curcuma long	ga L. e a sua composição química	21
1.2 Modelagem M	lolecular	25
1.2.1. Teoria dos O	rbitais Naturais de Ligação (NBO)	
1.2.2. Potencial elet	rostático molecular (MEP)	27
1.2.3. Estudos de o	rbitais moleculares de fronteira (FMO)	
1.2.4. UV-VIS		
1.2.5. Termodinâmi	са	
1.2.6. Estudo de pK	a	
1.2.7. LogP		
2.JUSTIFICATIVA		
3.OBJETIVOS		
3.1 Objetivos Gerais	\$	
3.2 Objetivos Espec	íficos	
4.METODOLOGIA		
5.RESULTADOS		
5.1 Parâmetros G	eométricosP	
5.2 Análise de NB	0	
5.3 Análise Poten	cial Eletrostático e Densidade de Spin	54
5.4 Propriedad	es Termodinâmicas	57
5.5 Detalhame polaridade, pKa e	nto das configurações eletrônicas dos CM's com índices HOMO/LUMO	a variação de 58
5.6 Estudos de	LogP	
5.7 UV-VIS e I	R	
6.CONCLUSÃO		
7.REFERENCIAS		72
Apendice A - Parâmet	ros Geométricos	
Apendice B - Análise d	le NBO	
Apendice C - Análise d	lo Potencial Eletrostático	
Apendice D - Propried	ades Termodinâmicas	
Apendice E - Estudos	de orbitais moleculares de fronteira (FMO)	

Apendice F - UV-	VIS e IR		
------------------	----------	--	--

1 INTRODUÇÃO

1.1. A cúrcuma e os curcuminóides

A cúrcuma (*Curcuma longa* L.) é conhecida popularmente no Brasil como açafrão, gengibre dourado ou amarelo, turmérico, açafroa e açafrão da terra (BRAGA, 2015; BRASIL, 2015). A origem do nome vem do sânscrito *cuncuma*, através do árabe, *curcum*, ou do hebraico *carcom* (BRAGA, 2015).

Figura 1 - Vista Geral da parte aérea de Curcuma longa

Fonte: " (SIGRIST, 2009)

É uma planta (Figura 1) herbácea e perene, de clima tropical e úmido, nativa do sudeste asiático, mais precisamente das florestas tropicais da Índia (SASIKUMAR, 2005). Trata-se de uma monocotiledônea pertencente à família das *Zengiberáceas* (MATA et al., 2004) com altura aproximada de 1,5m.

Várias partes do açafrão, como folha, flor e rizoma, têm suas propriedades estudadas. Entretanto, a parte vegetal mais utilizada é o rizoma, que pode ser consumido fresco ou seco. O rizoma principal é denominado usualmente de 'cabeça' ou 'pião' o qual é periforme, arredondado ou ovoide, com coloração dourada em seu interior. Ao redor da 'cabeça', verificam-se ramificações secundárias denominadas de 'dedos', sendo estas compridas, também tuberizadas, podendo apresentar estruturas de reservas denominadas 'bulbos'.

Figura 2Estes rizomas se desenvolvem agrupados no solo, abaixo do colo da planta, organizados numa estrutura denominada 'mão' (SIGRIST, 2009). O rizoma é o órgão da planta que apresenta interesse econômico, com diversas aplicações atuais e potenciais (BRASIL, 2010).

O rizoma deste curcuminóide pode ser utilizado com fins alimentícios e na produção de cosméticos e medicamentos, podendo ser consumido seco (triturado e/ou em pó, fresco (ralado ou em pedaços, chá e fitoterapia). (MORETES; GERON, 2019).

Há países onde utiliza-se a curcumina purificada, substituindo o corante artificial tartrazina na composição de vários produtos alimentícios industrializados. A FAO/WHO certificou o produto como "corante de alimentos, estabelecendo Ingestão Diária Aceitável (IDA) da curcumina de 0,0 a 0,1mg/kg de peso corpóreo, como açafrão em pó, contendo em média 3,0% de corante, a IDA é de 2,5mg/kg de peso corpóreo. (BORGES, 2009).

1.1.1 Curcuma longa L. e a Medicina

Desde a Antiguidade, os seres humanos vêm utilizando as plantas medicinais como agentes terapêuticos baseados em observações empíricas, mas somente no século XIX começou a utilização dos princípios ativos como substâncias químicas isoladas, purificadas e caracterizadas. (SUETH-SANTIAGO et al., 2015).

A *Curcuma longa* L é utilizada há muitos anos, um dos primeiros registros do seu uso está datado na Índia, há cerca de 4000 a.C. na China, foi mencionada no século VII; nos países Árabes, no século X e introduzida na Europa, no século XIII. Primeiramente a planta era apreciada por seu valor alimentício por ter propriedades

similares ao gengibre, posteriormente, ganhou espaço por suas propriedades etnomedicinais (MARCHI et al., 2016).

No Brasil, a Cúrcuma foi introduzida durante o período colonial, utilizada por garimpeiros para marcar regiões de garimpo e por escravos como condimento culinário. Permaneceu de forma incipiente até meados dos anos de 1960, quando se tornou mais expressiva em Goiás. O Governo Federal Brasileiro, através do Decreto nº 5.813, de 22 de junho de 2006, aprovou a Política Nacional de Plantas Medicinais e Fitoterápicos, que teve como um dos princípios orientadores a ampliação das opções terapêuticas e melhoria da atenção à saúde aos usuários do Sistema Único de Saúde (SUS). No programa, foi incluído dois eixos que deveriam regulá-lo: o agrofito-industrial e o das tradições as quais deveriam ser seguidas (BRASIL, 2009).

De acordo com o Ministério da Saúde, a *Curcuma longa L* no eixo das tradições (uso popular), é utilizada no tratamento de múltiplas enfermidades conforme Figura 3, sendo o rizoma a principal parte empregada nas preparações. É utilizada, portanto, no tratamento de feridas cutâneas, flatulências, dispepsia, artrite, gastrite, desordens hepáticas, icterícia, tosse, doenças de pele (dermatite, dermatomicoses, sarna, infecções de pele e parasitas de pele), diabetes, hanseníase, hirsutismo, úlceras causadas por HPV, coceira, erupções cutâneas, varíola, varicela, malária, sangramento pós-parto, injúria muscular, asma, vermes, tônico, revitalizador, estimulante, febre, diarreia, expectorante e anti-inflamatório (BRASIL, 2015).

Quanto ao eixo agro-fito-industrial, o SUS compilou 236 estudos *in-vitro* envolvendo a *Curcuma longa* L, seus derivados e produtos isolados. Pode-se observar na Figura 4, que a atividade com maior número de citações foi a antioxidante, seguida do potencial anticâncer, das propriedades antimicrobianas, da atividade anti-inflamatória, dentre outras (BRASIL, 2015).

Figura 3 - Principais usos etnofarmacológicos descritos para os rizomas de C. longa.

Fonte: BRASIL (2015, p.28)

Figura 4 - Número de citações das principais atividades in vitro demonstradas para droga vegetal e derivados de C. longa, bem como para substâncias isoladas da planta e produtos comerciais.

Fonte: (BRASIL, 2015)

No mesmo eixo agro-fito-industrial foram compilados 152 estudos de ensaio *in vivo* envolvendo a *Curcuma longa* L, derivados e formulações. As atividades mais estudadas foram: antioxidante, hepatoprotetora, anti-inflamatória, anticâncer, antidiabética, antilipidêmica. Destacou-se, ainda, as propriedades antidepressiva, analgésica, quimiopreventiva e cardioprotetora. Foi citado, em menor quantidade, a capacidade de hipocolesterolêmica, cicatrizante e anti-obesidade. Foi citado que há um potencial no tratamento da artrite reumatoide, bem como na nefroproteção, na antinocicepção e no tratamento da ansiedade (BRASIL, 2015). A indústria farmacêutica foi o segundo setor que mais investiu em tecnologia da Cúrcuma, correspondendo por aproximadamente 35%, perdendo apenas para o setor alimentício. As Indústrias de Biotecnologia e Cosmética foram as que apresentaram menores investimentos tecnológicos na área de interesse (BEZERRA et al., 2013).

1.1.2. Curcuma longa L. e a sua composição química

A composição da *Curcuma longa* L é bastante diversificada, pois apresenta as principais classes de compostos, os terpenos voláteis, presentes no óleo essencial de diferentes partes do vegetal, dos curcuminóides e fração não-volátil. Na raiz do açafrão da terra, possuem três curcuminóides ativos predominantes, sendo estes a curcumina (CUR), demetoxicurcumina (DMC) e a bisdemetoxicurcumina (BDMC), conforme a Figura 5. (SUETH-SANTIAGO et al., 2015)

Fonte: (JAYAPRAKASHA; JAGANMOHAN RAO; SAKARIAH, 2006; REVATHY et al., 2011)

Na literatura, é possível encontrar uma grande variedade de utilização destes três curcuminóides para uso na medicina, como anti-inflamatório, anticâncer, antitumoral, antioxidante, tratamento de diabete, entre outros, porém, na relação da BDMC é muito pouco relatada (LUO et al., 2015; LI et al., 2019).

Contudo, no comércio mundial é possível encontrar este turmérico com composição química da seguinte forma: curcumina (75–81%), demetoxicurcumina (15–19%) e bisdemetoxicurcumina (2,2-6,6%) quando isolados (ANAND et al., 2008; PARTHASARATHY; CHEMPAKAM; ZACHARIAH, 2008), mas estes valores podem apresentar diferença quanto ao local do qual foram extraídos, pois essa composição pode ser influenciada por vários fatores, tais como: cultivo, tipo de plantio, solo, disponibilidade hídrica, época de colheita, clima entre outros. (GOVINDARAJAN, 1980).

a)Cromatograma de HPLC típico (λ = 425 nm) do padrão de curcumina (65% de curcumina, 35% de outros curcuminoides , SigmaAldrich, St Louis, EUA). Picos principais correspondentes a bisdemetoxicurcumina (1), desmetoxicurcumina (2), curcumina (3).

b) Cromatograma de HPLC típico (λ = 425 nm) de açafrão do Cerrado. – LQCM/UFTM

Recentemente, foi identificado proporções distintas dos três curcuminóides em rizomas secos do Cerradoaçafrão, na região do Triângulo Mineiro, Minas Gerais, Brasil. A caracterização apropriada desses extratos vegetais está sendo preparada para publicação em uma revista científica adequada. Porém, é interessante destacar a diferença entre os perfis cromatográficos padrão e os da planta regional (Figura 6), onde o BDMC aparece em 5% no padrão, mas acima de 35% na amostra regional.

Os curcuminóides podem ser encontrados em duas formas tautoméricas, a forma ceto (a molécula é torcida) e a forma enol (molécula plana), dependendo das características do meio na qual está inserida, sendo que a forma enol é mais estável, e resulta como isômero de menor energia (KOLEV et al., 2005; BALASUBRAMANIAN, 2006; ANJOMSHOA; NAMAZIAN; NOORBALA, 2016, LLANO et al., 2019).

A forma tautomérica ENOL apresenta forma planar e uma forte interação intramolecular de Ligação de Hidrogênio. A forma enólica favorece também uma conjugação praticamente perfeita entre os dois anéis aromáticos do grupo fenol, na molécula onde nessa região é um centro antioxidante ativo (KOLEV et al., 2005; ZHANG et al., 2013). A função fenol, presente na região aromática da molécula e do ceto-enol, faz ligação de hidrogênio, ligadas a um ligante de sete carbonos que fornece flexibilidade à molécula conformando as interações hidrofóbicas (GUO et al., 2021).

Dividindo a estrutura dos CM's em 3 subunidades, é possível realizar estudos de REA (Relação Estrutura-Atividade) que fornecem informações sobre os requisitos estruturais relevantes para as diferentes atividades biológicas associadas a essa classe de substâncias, conforme Figura 7 (SUETH-SANTIAGO et al., 2015).

Fonte: Danilo Melle de Proença, 2023.

Esses três curcuminóides são os componentes que se estruturam com base na biossíntese, metabolismo, propriedades físico-químicas e metodologia para o desenvolvimento de suas diferentes atividades biológicas. Eles apresentam pouca absorção gastrointestinal por sua baixa biodisponibilidade em administrações orais, baixa solubilidade em água e rápido processamento metabólico (MORETES; GERON, 2019).

Outro aspecto relevante, é que apresentam baixa solubilidade em água em condições ácidas e pH fisiológico, e também hidrolisam rapidamente em soluções. Os curcuminóides são solúveis em dimetilsulfóxido (DMSO), acetona e etanol (REVATHY et al., 2011).

Entretanto, a quantidade de BDMC, no rizoma da planta, é muito baixa, quando comparada aos demais, porém, apresenta grande solubilidade em meios polares, com mais estabilidade em meios fisiológicos (em meios ácidos e neutros) devido ao fato de não haver grupo metoxi na molécula (SHARMA; GESCHER; STEWARD, 2005; SHARMA; STEWARD; GESCHER, 2007; BASILE et al., 2009).

Estudos in vitro demonstram que os três curcuminóides citados apresentam atividade antioxidantes e mostraram ser varredores de radicais livres e espécies reativas de oxigênio reativo (ROS) (JAYAPRAKASHA; JAGANMOHAN RAO; SAKARIAH, 2006; ANAND et al., 2008).

Para verificar o mecanismo antioxidante dentro de determinada molécula, é necessário ver a influência desta, em ambientes polares e não polares, além de verificar, através da teoria funcional da densidade, qual mecanismo deve ser considerado: transferência de um único elétron (SET), formação de aduto radical (RAF), transferência de átomos de H (HAT), transferência de átomos de H desprotonada (HAT-D) e transferência sequencial de elétrons por perda de prótons (SPLET) (GALANO et al., 2009).

Na região do enol pode ocorrer doação de elétrons com grande possibilidade de antioxidação, devido à conjugação perfeita dos seus anéis aromáticos onde se encontram os grupos fenóis, que são responsáveis pela eliminação de ROS. Nessa região, é onde ocorre, de forma mais intensa, a desprotonação, através do mecanismo SPLET e HAT (KOLEV et al., 2005; SANDUR et al., 2007; SHEN; JI, 2007; INDIRA PRIYADARSINI, 2013).

Em estudos de investigação da ruptura dos curcuminóides, no processo da digestão com pH de 7,5, percebeu-se que a DMC e BDMC conferiram estabilidade aos curcuminóides, isto é, apresentam efeito retardante da ruptura, enquanto a CUR

diminui significativamente na fase digestiva intestinal. Neste estudo, percebeu-se que a DMC, depois de 24 horas na solução tampão, permaneceu com 57% do material presente inalterado e a BDMC permaneceu estável após 24 horas de incubação. Nas reações de ruptura, indicaram que o BDMC é estável em pH fisiológico e não sofreu oxidação espontânea, devido à falta de grupos metoxi presentes na curcumina e na demetoxicurcumina (GORDON et al., 2015; GUO et al., 2021; SUDEEP et al., 2021).

1.2 Modelagem Molecular

Através de cálculos teóricos, é possível prever, com precisão, a energia envolvida em cada reação, a geometria da molécula, a energia potencial de cada molécula, sua solubilidade e, ainda, determinar os estados de transição. Tais dados são de extrema relevância para a obtenção de moléculas bioativas e na formulação de novos fármacos, além de auxiliar na obtenção do desempenho delas nos organismos e compreender sua reação sem a necessidade de testes *in vivo*.

De acordo com Mota et al. (2015), existem sistemas moleculares cujas conformações e propriedades são de difícil determinação experimental. Sendo assim, é necessário verificar a energia mínima e a função de estado, associada à conformação e propriedades moleculares como parte do cálculo teórico, isso é, otimizar a geometria da molécula.

O que chamamos em Química Teórica como otimização de geometria nada mais é do que determinar estados estacionários no qual a derivada da energia com respeito a todos os deslocamentos dos núcleos é igual a zero. Uma estrutura de mínimo (não necessariamente global) corresponde a um ponto estacionário em que qualquer deslocamento das posições nucleares implica em um aumento de energia (MOTA et al., 2015).

Uma metodologia de Química Quântica computacional que tem tido bastante sucesso é a Teoria do Funcional da Densidade (DFT, *density functional theory*, do inglês). A DFT, formulada por Hohenberg, Kohn-Sham (CRAMER, 2004). Trata-se de uma metodologia alternativa ao método de HF para obtenção de energia eletrônica de um sistema atômico ou molecular, e é uma ferramenta muito importante para verificação de mecanismos de oxidação e ativações de uma estrutura eletrônica (ALLOUCHE, 2012; KEPP; DASMEH, 2013; FU et al., 2015).

O método DFT descreve os elétrons interagentes do sistema, sujeitos a um potencial externo, por meio da densidade eletrônica. Desta forma, verificamos uma grande vantagem da DFT diante do método HF: com apenas uma única função analítica da densidade eletrônica \emptyset (ρ (r)), é possível descrever os *N* elétrons do sistema, enquanto que no método HF, é necessário uma função de onda para cada um dos *N* elétrons do sistema. Sendo assim, a metodologia de DFT tem se mostrado altamente eficiente e muito utilizada nos dias atuais, pois é possível obter estruturas eletrônicas vibracionais com precisão e perturbação de segunda ordem. Tais necessidades não são consideradas quando se trata de ligações de hidrogênio, pois este tipo de interação intermolecular é fundamental para análises de processos químicos e biológicos, mas outras ligações mais fracas são de grande importância bioquímica (MOTA et al., 2015).

Vários estudos utilizando a metodologia DFT têm sido utilizados na curcumina, principalmente relatando que a forma enol é energeticamente mais estável e é a forma dominante, tanto na fase gasosa, quanto em soluções (BENASSI et al., 2008; ZHAO et al., 2010; EREZ et al., 2011; ANJOMSHOA; NAMAZIAN; NOORBALA, 2016).

1.2.1. Teoria dos Orbitais Naturais de Ligação (NBO)

O uso da ferramenta NBO *(Natural Bond Orbitals)* pode fornecer informações a respeito dos efeitos eletrônicos de um sistema, pois é possível estudar a ligação intra e intermolecular e a interação entre ligações (WEINHOLD; LANDIS, 2001; CHIMIE, 2014).

Através deste método, é possível, de forma clara, ver em toda a molécula os orbitais do elétron e fazer uma análise da população. Uma das análises mais importantes destes dados, é ver o caráter doador-receptor existente entre diversos orbitais: sigma ligante (σ), sigma antiligante (σ^*), pi ligante (p), pi antiligante (p^*), pares de elétrons livres (PL), além de outros de menor importância, tais como os orbitais de Rydberg(RY) e os orbitais que envolvem elétrons mais internos (CR). Com esta análise das interações entre doador e receptor (orbitais ocupados e desocupados) é possível verificar a origem da estabilização da molécula (LEGON; MILLEN; ROGERS, 1980; REED; WEINHOLD, 1985; WEINHOLD; LANDIS, 2001; TAYYARI et al., 2007; RAJAN; SHAMEERA AHAMED; MURALEEDHARAN, 2018).

Com os NBO's é possível ter a representação das ligações localizadas e os pares isolados de estrutura da molécula, na qual é possível interpretar convenientemente as funções de onda *ab initio*, em termos dos conceitos clássicos de estrutura de Lewis pela transformação destas funções para NBO (MINKIN, 1999).

No método de geração dos NBO's, formam-se também orbitais não ocupados, que podem ser usados para descrever efeitos de não-covalência. Os mais importantes desses orbitais não ocupados são os antiligantes. A teoria NBO fornece, também, ferramentas para analisar transferências de cargas de orbitais ligantes para antiligantes, e a quantidade energética vinculada a esse processo, por meio disso, podem ser usadas como medida da localização.

A deslocalização de elétrons de NBO's preenchidos (doadores) para os NBO's vazios (aceptores) descreve uma transferência de elétrons conjugada entre eles, pois a energia de estabilização resultante é de segunda ordem. Menor ocupação (ou seja, densidade de elétrons) de ligação NBO significa que mais elétrons foram doados para NBO's antiligantes, portanto, menor ocupação leva a uma capacidade de doação mais forte (JOSHI; TANDON; JAIN, 2012).

1.2.2. Potencial eletrostático molecular (MEP)

O potencial eletrostático molecular (MEP) é obtido através da densidade eletrônica da molécula, ao fazer a análise, é possível reconhecer os locais onde podem ocorrer ataques eletrofílicos e reações nucleofílicas (SCROCCO; TOMASI, 1978).

Os MEP's são adequados para analisar processos de uma molécula em meio biológico, como na interação fármaco-receptor, enzima-substrato, interações eletrofílicas e ligação de hidrogênio (KARTHICK; TANDON, 2016; LIPIN et al., 2021).

É através deste potencial que é possível prever como uma molécula vai interagir com outra espécie química, e com isso, ver seu comportamento reativo de uma ampla variedade de sistemas químicos, em ambas as reações eletrofílicas e nucleofílicas, sendo possível, ainda, o estudo de processos de reconhecimento biológico e interações de ligações de hidrogênio. Este tipo de representação gráfica é uma propriedade física real, na qual é possível avaliar a distribuição eletrônica na superfície das moléculas (DEB, 1973; OKULIK; JUBERT, 2005; PÉREZ SCHMIT et al., 2011; HABIBI et al., 2014; DUPONT et al., 2021).

Estudos de MEP em moléculas protonadas, desprotonadas, cátion e aníons radicais e eletronicamente excitadas têm sido amplamente desenvolvidos, pois os prótons e elétrons contribuem diretamente para a carga da molécula e sua polarização, sendo necessário o estudo de algumas propriedades desses sistemas moleculares (SCROCCO; TOMASI, 1978).

Na forma gráfica do MEP, as cores indicam diferentes valores de potencial eletrostático na superfície da molécula. A cor vermelha indica região rica de elétrons e a cor azul, regiões pobres em elétrons. Podem apresentar, também, coloração verde representando o potencial eletrostático neutro. A região de ataque eletrofílico é vermelha na maioria dos diagramas MEP, enquanto a região de ataque nucleofílico é azul (átomos de hidrogênio) (NASRIN MASNABADI et al., 2013; NOUREDDINE et al., 2021).

1.2.3. Estudos de orbitais moleculares de fronteira (FMO)

O estudo dos orbitais moleculares de fronteira foi proposto por FUKUI (FUKUI, 1982) e ele é obtido por duas áreas importantes, o orbital molecular desocupado mais baixo (LUMO) e o orbital molecular ocupado mais alto (HOMO). Estes desempenham um papel vital nas reações químicas, tais como a carga intramolecular, transferências, transições eletrônicas e carga molecular.(GLENDENING; STREITWIESER, 1994; ALAŞALVAR et al., 2018)

As regiões HOMO e LUMO são consideradas como doadoras e grupos aceitadores ocupados/desocupados por elétrons, onde o LUMO simboliza a capacidade de obtenção de elétrons (estado vazio) e HOMO significa a capacidade de dar elétrons da molécula (estado preenchido). Estes podem ser usados para determinar transições eletrônicas moleculares, transferências de carga intramolecular e distribuição de carga molecular (FUKUI, 1982; ALAŞALVAR et al., 2018).

De acordo com Lewis (1999), a transferência de um par de elétrons do HOMO para o LUMO é, por definição, uma reação entre um ácido de Lewis e uma base de Lewis, sendo que seu composto reage via seu HOMO, este funcionando como um doador de pares de elétrons, isto é, uma base de Lewis ou um nucleófilo.

Um nucleófilo, ou base de Lewis, participa em reações via seu HOMO. O composto que reage via seu LUMO está funcionando como um receptor de par de

elétrons, que é um ácido de Lewis ou um eletrófilo, que participa de reações via LUMO. Com exceção do cátion hidrogênio (H+), que não tem nenhum elétron e, portanto, não pode ter um HOMO, todas as moléculas e íons possuem um HOMO e um LUMO (RAMAZANI et al., 2018).

Através desta análise é que a energia do HOMO está diretamente relacionada ao potencial de ionização, a energia do LUMO está diretamente relacionada com a afinidade eletrônica e a diferença de energia entre os orbitais HOMO e LUMO é chamado de GAP, que demonstra a energia da estabilidade da estrutura.

Quando a diferença de energia é grande, sugere-se que a molécula tem alta estabilidade cinética e reatividade química mínima (LEWIS; IOANNIDES; PARKE, 1994; AIHARA, 1999).

Nos últimos anos, métodos de DFT são cada vez mais utilizados por fornecerem outros índices com os valores de HOMO e LUMO, sendo estes: eletronegatividade (χ), potencial químico (m),dureza química (η), eletroafinidade (A), índice de eletrofilicidade global (ω), nucleofilicidade (e), maciez (S), potencial de ionização (I) (PARR; PEARSON, 1983; NASRIN MASNABADI et al., 2013; SHEIKHI; BALALI; LARI, 2016; ALAŞALVAR et al., 2018; RAMAZANI et al., 2018; AKBAS; ERGAN; DONMEZ, 2019; KHEMALAPURE et al., 2019).

I =-Еномо	Equação 1 Potencial de Ionização
A=-ELUMO	Equação 2 Eletroafinidade
$\mu = -(I+A)/2$	Equação 3 Dureza
χ= (Е номо + Еιυмо)/2 = - μ	Equação 4 Eletronegatividade
η = - (Еномо-Егимо) /2	Equação 5 Dureza Química
S= 2 η ⁻¹	Equação 6 Maciez
ω = μ²/2η	Equação 7 Índice de eletrofilicidade global

Em uma molécula mais reativa, o nucleófilo é caracterizado por um valor menor de $\mu \in \omega$, e um bom eletrófilo é caracterizado por um alto valor de $\mu \in \omega$. Outro fator importante para se analisar são os valores de η . GAP's maiores de HOMO-LUMO

sugerem uma molécula que é rígida, sendo, portanto, menos reativa, enquanto GAP's pequenos indicam uma molécula mole, que também é mais reativa. Essa propriedade é importante para análise de como estas moléculas reagem e em que lugares específicos.

O conceito de eletrofilicidade (ω) pode ser definido como o índice de reatividade global semelhante à dureza química e ao potencial químico. Este novo índice de reatividade mede a estabilização da energia quando o sistema adquire uma carga eletrônica, sendo assim, é um descritor de reatividade que permite uma classificação quantitativa da natureza eletrofílica global de uma molécula, dentro de uma escala relativa.

Quando duas moléculas reagem, saber qual vai atuar como eletrófilo e qual vai atuar como nucleófilo, depende de qual tem maior e menor índice de eletrofilicidade, isto é, quando apresenta valores baixos de ω na conformação, demonstra a forte corrente de elétrons da fração doadora para o aceitador.

Além do conhecimento da suavidade global (*S*), diferentes suavidades locais usadas para descrever a reatividade dos átomos na molécula, podem ser definidas como moléculas que apresentam quantidades locais de suavidade descrevendo ataques nucleofílicos, eletrofílicos e radicais, respectivamente (BUYUKUSLU et al., 2010; NASRIN MASNABADI et al., 2013; LI et al., 2019).

A eletronegatividade e a dureza são usadas extensivamente para prever o comportamento químico. Sendo que uma molécula dura tem um grande valor de GAP, enquanto uma molécula mole apresenta um pequeno valor. Logo, o LUMO representa a capacidade de aceitação de elétrons, e o HOMO a capacidade de doação de elétrons de uma molécula. Como resultante deste processo, o GAP (HOMO-LUMO) diminui devido à forte capacidade de aceitação de elétrons do grupo receptor de elétrons (PARTHASARATHI et al., 2004; NASRIN MASNABADI et al., 2013; KHEMALAPURE et al., 2019).

A fração de elétrons transferidos (ΔN) de moléculas estudadas entre as moléculas de cobre ou ferro, podem indicar as moléculas com maiores propriedades antioxidantes. Com esta análise, é possível verificar o movimento das moléculas com menor eletronegatividade (composto inibidor) para as de maior valor (superfície do metal) até que o equilíbrio em potenciais químicos seja alcançado (ABREU-QUIJANO et al., 2011; HADISAPUTRA et al., 2020; RANGEL et al., 2021).

A espectroscopia UV-Vis é um método que pode monitorar e medir as interações de UV e luz visível com diferentes compostos químicos, na faixa de comprimento de onda entre 200 e 780nm (CLASSEN et al., 2017; POWER et al., 2019).

A transferência de carga entre compostos orgânicos é analisada pelo espectro de absorção UV-VIS, pois ele demonstra a absorção mais importante, comprimentos de onda (I), forças do oscilador (f), energias de excitação (E) e principais contribuições para a transição eletrônica (KHEMALAPURE et al., 2019). Com esta técnica, são medidas as transições eletrônicas produzidas quando a luz da região UV e visível interagem com a amostra, pois a absorção está relacionada com os saltos eletrônicos entre HOMO e LUMO, não condicionados por solvente. Tal informação é de extrema relevância quando se trata de curcuminóides (COSTA et al., 2016).

1.2.5. Termodinâmica

Estudos termodinâmicos em uma molécula são necessários para verificar seu fluxo de energia em diversas condições, a fim de atingir o seu equilíbrio, os parâmetros termodinâmicos a serem estudados para verificar a reatividade e a estabilidade do ponto de vista termodinâmico, e ainda, se ocorre a absorção ou liberação de energia, que são a variação de entalpia (Δ H°), a energia livre de Gibbs (Δ G°) e a entropia (Δ S°) (HABIBI et al., 2014; KRISHNAN, 2019).

O uso do ciclo termodinâmico mostra a reação de protonação, o que é muito útil para calcular os valores de pKa (GUPTA et al., 2015; RAJAN; SHAMEERA AHAMED; MURALEEDHARAN, 2018).

Valores negativos da variação de energia livre de Gibbs indicam que a adsorção é espontânea e termodinamicamente favorável (HAMID; MUNAIM, 2017). Já valores negativos para entalpia indicam que o processo de adsorção é exotérmico, enquanto valores positivos indicam um processo de adsorção endotérmico. Ao passo que, valores positivos para entropia indicam um aumento da aleatoriedade na interface sólido-solução originada por modificações estruturais no adsorvato e no adsorvente.

A energia livre de Gibbs avalia a afinidade entre o adsorvato e adsorvente, podendo indicar se o processo é espontâneo ou não (OLIVEIRA et al., 2013) (KALAVATHY et al., 2005; EMANUEL et al., 2013).

1.2.6. Estudo de pKa

Na área farmacológica, é necessário conhecer a dissociação de uma molécula, visto que é necessário verificar a sua solubilidade no organismo ou como pode ser afetada pelo meio. Com o pKa, é possível verificar a ruptura da molécula em vários tipos de soluções tampões e até mesmo prever o mecanismo de ação, pois está diretamente ligado à transferência de prótons e elétrons dentro de uma atividade biológica.

Os curcuminóides apresentam três hidroxilas que afetam diretamente no pKa de sua molécula gerando subprodutos devido à protonação e desprotonação. A relação de pKa com pH do meio, na qual a molécula estiver, pode facilitar a sua solubilidade dentro do organismo, uma vez que apresentam baixa solubilidade em água e são solúveis em meios mais básicos, assim, funcionarão como doadores de elétrons. Entretanto, nesta faixa de pH, a curcumina é facilmente degradada, sugerindo que sua expressiva capacidade antioxidante esteja relacionada a outro tipo de mecanismo (BERNABÉ-PINEDA et al., 2004; SUETH-SANTIAGO et al., 2015).

Uma equação teórica para o cálculo do pKa, baseada em uma reação de transferência de prótons entre o ácido e uma água-molécula, é derivada usando a relação de equilíbrio químico geral.

É possível obter os valores de pKa a partir das energias livres de espécies envolvidas em uma reação de transferência de próton. Tal procedimento é um método indireto, que combina, a partir de um ciclo termodinâmico, as energias livres de Gibbs envolvidas no processo em fase gasosa com as energias livres de solvatação (Figura 8 e Equação 8Equação 9Equação 10Equação 11) (PLIEGO, 2003; GOSS, 2008; MCKEE; POGORELOV, 2019).

Fonte: (PLIEGO, 2003; GOSS, 2008; MCKEE; POGORELOV, 2019)

Equação 8 equilíbrio entre o ácido e a água

$$HA + H_2O \rightarrow A^- + H_3O^+$$

Equação 9 equação de ΔGsol

$$\Delta G_{sol} = \Delta G_g + \Delta G_{solv}(A^-) + \Delta G_{solv}(H_3O^+) - \Delta G_{solv}(HA) - \Delta G_{solv}(H_2O)$$

Equação 10 equação de pKa

$$pK_a = \frac{\Delta G_{sol}}{1.364} - \log[H_2 O]$$

Equação 11 Fator de correção de pKa, $pK_a (corrected) = pK_a (corrected) - 4.54$

1.2.7. LogP

Uma molécula que é uma futura candidata a um fármaco oralmente ativo deve atender alguns parâmetros, tais como: não ter mais de 5 doadores de hidrogênios ligados a oxigênio e/ou nitrogênio; não ter mais de 10 aceitadores de hidrogênios ligados a oxigênio e/ou nitrogênio; uma massa inferior a 500Da (Dalton) e um coeficiente de partição octanol-água (log P) não maior que 5 (DAINA; MICHIELIN; ZOETE, 2017).

Um dos métodos de verificar a Lipofilicidade é através do coeficiente de partição entre n-octanol e água (log P o/w), pois está relacionado à transição de uma molécula de um meio polar para um meio apolar, uma vez que, em sistemas biológicos, existe a necessidade de migração entre meios com diferentes propriedades de solvatação, outro detalhe que desempenha um papel crucial na
determinação das propriedades ADMED (absorção, distribuição, metabolismo, excreção, toxicidade) e na adequação geral dos candidatos a medicamentos.

Estudos realizados indicam que uma alta lipofilicidade (> 5), frequentemente leva a compostos com rotatividade metabólica rápida, baixa solubilidade e má absorção, se a lipofilicidade for muito baixa, uma droga geralmente exibirá propriedades ADMET pobres. A interação da molécula com o alvo biológico deve verificar a sua capacidade de particionar em um ambiente lipofílico em pH diferente (estômago 2,0, rins 4,2, intestino delgado (comida 5,0; jejum 6,8), muco duodenal 5,5, plasma 7,4), pois caso seja administrado via oral, geralmente tem que passar por uma série de barreiras (por exemplo, membranas biológicas) (XING; GLEN, 2002; ALI et al., 2012; ARNOTT; PLANEY, 2012; EROS et al., 2012; COLLINO, 2014; DAINA; MICHIELIN; ZOETE, 2017).

2 JUSTIFICATIVA

No mercado já existe um medicamento fitoterápico chamado Motore®, da empresa Achë (https://www.ache.com.br/produto/sob-prescricao/motore), de extrato seco de *Curcuma longa* L para o tratamento de osteoartrite e artrite reumatóide, com ação anti-inflamatória e antioxidante. O medicamento descreve que há vários curcuminóides, incluindo a curcumina, que fazem esta atividade dentro do organismo, mas não há citação dos demais curcuminóides.

A composição química destes três curcuminóides, no comércio mundial, no turmérico é: curcumina (75-81%), demetoxicurcumina (15-19%) e bisdemetoxicurcumina (2,2-6,6%) quando isolados, e o LQCM/UFTM. Descobriu-se que a *Curcuma longa* L., da região do cerrado mineiro, em Uberaba, possui uma maior quantidade de BDMC e DMC, sendo de curcumina - 43,04%, demetoxicurcumina - 23,73% e bisdemetoxicurcumina - 33,23%, quando isolados.

Neste trabalho são apresentados cálculos de diversos parâmetros moleculares e eletrônicos, determinantes para os respectivos mecanismos de ação antioxidante em meio biológico, geralmente bifásico e com variações de pH. Embora a ação dos três curcuminóides seja muito semelhante, foi proposto avaliar ajustes moleculares que possam personalizá-los para novas aplicações específicas.

3 OBJETIVOS

3.1 Objetivos Gerais

Comparar os curcuminóides CUR, DMC e BDMC da Curcuma longa L. utilizando métodos de DFT e NBO em todos os seus estados de protonação e radicalares, em água e etanoato de etila como solventes polar e apolar, respectivamente.

3.2 Objetivos Específicos

- Realizar cálculos quânticos baseados na teoria funcional de densidade eletrônica [método M06-2X/6-311G++(2d,p)] para os CMs, bem como cálculos irrestritos equivalentes para os seus possíveis intermediários radicalares;
- avaliar a solubilidade teórica de CMs em diferentes solventes, utilizando-se métodos de solvatação contínua (meio dielétrico), correlacionando-se com dados experimentais disponíveis;
- avaliar preferências conformacionais, estabilidade e cargas atômicas parciais destes CMs;
- estimar o pKa de CMs, a partir do método M06-2X/6-311G++(2d,p);
- estimar o Log P (hidrofobicidade) de CMs;
- calcular densidades de *spin* e cargas atômicas parciais dos cátions radicais dos CMs, a partir da oxidação teórica primária destas moléculas;
- identificar os radicais livres estabilizados por ressonância eletrônica, bem como os sítios de reação para a atividade antioxidante destas moléculas;
- correlacionar os resultados obtidos com dados teóricos e experimentais da ampla literatura disponível sobre as moléculas investigadas, de forma que se possa propor novas abordagens para discutir a sua atividade antioxidante.

4 METODOLOGIA

As moléculas de CUR, DMC e BDMC foram otimizadas no programa Gaussian 09 para mínimos energéticos, confirmados pela análise vibracional em metodologia M062X e conjunto de funções de base 6-311++G(d,p). O Método DFT M06-2X foi escolhido por reproduzir bem resultados experimentais de sistemas pi conjugados e o conjunto de base 6-311++G(d,p) aumentado por funções de polarização 'd' em átomos pesados e funções de polarização 'p' em átomos de hidrogênio, bem como funções difusas para átomos de hidrogênio e pesados. (WEINHOLD; LANDIS, 2001; TAYYARI et al., 2007; JOSHI; TANDON; JAIN, 2012; WALKER et al., 2013; LIAO et al., 2015; DEY; CHAKRABORTY, 2020; KHALID et al., 2020)

Os cálculos com cátions radicais e radicais livres deram-se com o funcional irrestrito equivalente, UM06-2X, para poder detalhar as características do elétron desemparelhado adquiridas na oxidação. Neste aspecto, foi importante avaliar as densidades de *spin* em contraste com as cargas atômicas parciais que foram obtidas a partir do método CHELPG (BRENEMAN; WIBERG, 1990; KARTHICK; TANDON, 2016) que as derivou do potencial eletrostático.

Cálculos de formação de calor foram realizados utilizando o mesmo método, considerando-se os três possíveis estados de protonação das moléculas investigadas, ou seja, forma enolato e fenolato. A influência do solvente foi incluída utilizando o modelo de solvente implícito, dado pelo contínuo dielétrico polarizado (PCM) (PLIEGO, 2003; ABREU-QUIJANO et al., 2011). Foram escolhidos os solventes água (representando o meio polar) e etanoato de etila (representando o meio apolar), pois seus efeitos são de extrema importância para descrever as propriedades estruturais e espectroscópicas. (BENASSI et al., 2008)

Para encontrar o comportamento reativo das moléculas, o esquema de cálculo de carga atômica CHELPG foi usado, no qual as cargas atômicas foram ajustadas para o MEP em vários pontos ao redor da molécula e os valores de potencial eletrostático das moléculas calculados por M062x/6-311++G(d,p). (BRENEMAN; WIBERG, 1990; CRAMER, 2004; KARTHICK; TANDON, 2016)

O método iLOGP foi utilizado para verificar o logP baseado em parâmetros físico-químicos que contam com energias livres de solvatação em n-octanol e água, calculados pelo modelo Generalized-Born e área de superfície acessível ao solvente (GB/SA) (CHENG et al., 2007; DAINA; MICHIELIN; ZOETE, 2014). Para esta análise,

utilizou-se o SwissADM[®] no navegador da Web disponível em: <http://www.swissadme.ch>.

O método de NBO se fez necessário para verificar as ordens das ligações entres as moléculas estudadas e as características das duplas ligações de cada molécula. Na análise, foram verificadas as ligações intramoleculares das moléculas utilizando as perturbações de 2ª ordem entre doadores e receptores de elétrons.

As ordens de ligações e a análise populacional foram imprescindíveis para verificar e confirmar os desenhos de MEP e como ocorreria a deslocalização dentro da molécula, na qual o elétron sairia das menores distâncias das análises populacionais para as ligações pi de maiores valores. Outro detalhe importante para a análise de NBO, foi verificar em quais oxigênios haveria a possibilidade de doar elétrons e interagir dentro de uma reação química forte (JOSHI; TANDON; JAIN, 2012).

No ciclo termodinâmico, avaliou-se a variação de Gibbs, entalpia e entropia de cada sistema com o método M06-2X/6-311++G(d,p), no qual foi verificado a diferença entre a molécula formada e a molécula inicial, a fim de verificar a estabilidade da molécula e a possibilidade de ocorrer de forma espontânea ou mediante temperatura do meio sob T=298,15K e P=1atm (HABIBI et al., 2014; KRISHNAN, 2019). Por meio do ciclo termodinâmico, pelo método indireto, realizou-se, através dos dados obtidos no vácuo e em solvente, os valores de pKa de cada sistema (GUPTA et al., 2015; RAJAN; SHAMEERA AHAMED; MURALEEDHARAN, 2018).

5 **RESULTADOS**

5.1 Parâmetros Geométricos

Nesta seção, avaliou-se as distâncias e ângulos de ligação das moléculas CUR, DMC e BDMC, pois não houve variação em diedros, dada a característica planar das formas ceto-enol de menor energia, favorecidas pelas ligações de hidrogênio intramoleculares. Os átomos da estrutura química da molécula foram rotulados de acordo com as figuras 9, 10 e 11. Esta numeração atômica foi utilizada na simulação, assim como, na discussão dos resultados.

Fonte: Danilo Melle de Proença, 2023.

Figura 10 - Estrutura química da DMC enólica com os átomos rotulados.

Fonte: Danilo Melle de Proença, 2023.

Fonte: Danilo Melle de Proença, 2023.

Os valores teóricos foram obtidos por cálculos M06-2X com conjunto de bases 6-311G++(d,p). O método DFT M06-2X foi escolhido por reproduzir bem resultados experimentais de sistemas pi conjugados e pelo fato de os elétrons, em sistemas moleculares, estarem fracamente ligados com a expansão da nuvem eletrônica, desta forma, a função difusa se faz necessário, tais funções foram representadas pelo símbolo (+), denotando que elas foram adicionadas nos orbitais *s* e *p* dos átomos pesados, e o símbolo (++) significa que funções difusas foram adicionadas nos orbitais *s* dos átomos de H (ALLENT; KARO, 1960; ZHAO; TRUHLAR, 2008; WALKER et al., 2013; KHALID et al., 2020).

A Tabela A1 exibe os comprimentos de ligação dos CM's com os dados experimentais de difração de raios X da CUR (TONNESEN, HANNE HJORTH; KARLSEN, JAN; MOSTAD, 1982; PARIMITA et al., 2007). Observa-se uma boa concordância entre os dois métodos. A CUR, DMC e BDMC apresentaram diferenças médias percentuais de 2,15%, 2,87%, 2,87% respectivamente, considerando todas as ligações estudadas, e de 0,57%, 0,46%, 0,46% respectivamente, considerando somente as ligações constituídas pelos átomos sem o hidrogênio.

As maiores variações foram observadas para ligações entre O–H do fenol, enol e da ligação de hidrogênio entre o enol e a cetona, com diferenças percentuais superiores à 16,7%. Essa diferença está relacionada ao método de análise experimental de difração de raios, pois neste tipo de análise, o átomo de hidrogênio não é posicionado com base nos valores da densidade eletrônica, mas segundo um banco de dados, exceto quando este hidrogênio estiver envolvido em uma ligação intramolecular, como o átomo do enol H37.

Tabela 1 Variação dos comprimentos de ligação obtidos pelo método de M06-2X/6- 311++(2d.p) maior que 0.1 Å								
			CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO	
			1/2	0/2	0/2	-1/1	-1/1	
	CUR	H2O		-0,100				
	001	EE		-0,102				
50.040	DMC	H2O		-				
56-210	Divio	EE		-0,100				
	BDMC	H2O		-0,111				
	DDIVIC	EE		-				
	CUR	H2O					-	
		EE					-0,102	
470 000	DMC	H2O			-0,118		-	
176-230		EE			-0,121		-0,102	
	PDMC	H2O			-0,117		-	
	RDMC	EE			-0,101		-0,559	
	CLIP	H2O						
	CUR	EE						
22O36H	DMO	H2O						
	DIVIC	EE						
	DDMC	H2O			-0,101			
	BDMC	EE			-			

Fonte: Danilo Melle de Proença, 2023.

Através da Tabela 1 (Tabela A2, A3, A4), percebe-se que as formas cátion radical e enolato de ambos os CM's não apresentaram variações significativas maior ou menor que que 0,1Å. Nas moléculas de ENOL-RAD entre os átomos 5C-21O, nas moléculas de FENOL-RAD e FENOLATO entre os átomos 17C-23O de ambos os curcuminóides, a desprotonação da hidroxila favorece a interação entre os átomos de C e O, que adquirem, com a redução, a característica de ligação simples com valor aproximado de 1,22Å, mas isso não implica na transformação dos anéis benzênicos com configuração do tipo quinona.

Quando se reduz esse valor para uma diferença entre 0,5 a 0,1, os valores mais significativos de aumento ocorreram nos átomos 220...36H, em ambos os curcuminóides, nas formas de cátion radical e enol-radical. Entre os átomos 4C=5C houve um aumento, o que fez com que adquirissem uma característica de ressonante, com valor aproximado de 1,46Å e continuou com redução entre os átomos 5C-21O e 17C-23O, nas formas enol-radical e fenol-radical.

Na Tabela A5, exibe-se os ângulos de ligação dos CM's com os dados experimentais de difração de raios X da CUR (TONNESEN, HANNE HJORTH; KARLSEN, JAN; MOSTAD, 1982; PARIMITA et al., 2007). Observa-se uma boa

concordância entre os dois métodos. A CUR, DMC e BDMC apresentaram diferenças médias de 0,75%, 0,54%, 0,42% respectivamente, considerando todas as ligações estudadas, e de 0,40%, 0,22%, 0,15%.

As maiores diferenças foram observadas para ângulos de ligação nos quais o átomo de hidrogênio está envolvido como, por exemplo, os ângulos 2C-3C-4C, 4C-5C-6C, 6C-7C-14, 11C-20O-35H e 17C-23O-37H concordando com os resultados do comprimento de ligação. As diferenças nos valores dos ângulos entre os dados obtidos e o experimental se deram devido à escolha do método de difração de raios X, na região do enol e do fenol, justificadas com o mesmo argumento usado no comprimento de ligação.

·		CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO
		1/2	0/2	0/2	-1/1	-1/1
	CUR					
8C-1C-2C	DMC					
	BDMC					
	CUR	-0,72310	-0,95608			0,57922
1C-2C-3C	DMC	-0,79014	-0,54823			0,56054
	BDMC	-0,82676	0,54003			0,76922
	CUR	-0,69955	-2,44585		-4,21626	
2C-3C-4C	DMC	-0,98053	-2,75805		-4,35178	
	BDMC	-0,53034	3,64983		-4,1738	
	CUR		5,70749		6,59945	
3C-4C-5C	DMC	-0,83233	5,98876		6,63347	0,50812
	BDMC		-8,89031		6,62331	-8,21398
	CUR	-1,79164	-6,65772		-8,42749	0,76046
4C-5C-6C	DMC	-1,37975	-6,89125		-8,49684	0,71451
	BDMC	-2,72035	-0,56273		-8,38761	0,60909
	CUR	-1,00747	-2,47583		-1,31045	
5C-6C-7C	DMC	-1,12195	-2,03996		-1,08086	
	BDMC	-1,24169	-0,97447		-1,27874	
	CUR		0,99944		0,57185	1,81516
6C-7C-14C	DMC		0,63064	-0,62478		1,74904
	BDMC		0,55829	-0,51644	0,58119	1,35036
	CUR	-1,89711	1,01299		6,83474	2,01206
4C-3C-22O	DMC	-0,75126	1,13720		6,89115	2,00461
	BDMC	-2,47369	-2,30287		5,89637	0,79889
40-50-210	CUR		1,07706		6,89940	-3,27556
70-30-210	DMC	-1,60482	1,20814	0,57764	6,88258	-3,19457

abola 7 Variacao dos a	naliloe de ligação obtidoe	noio motodo do	$M(16-7) \times (6-311 \pm 17) = 0$
a μ α λ α		DEIU IIIELUUU UE	

	BDMC	-1,04456	-2,2736	0,5463	6,84632	-2,40597
	CUR					
5C-210-36H	DMC	0,51689				
	BDMC	0,50194				-0,5108
12C-11C-20O	CUR					
	DMC					
	BDMC					
	CUR	1,03808			-0,97738	-0,63030
11C-20O-35H	DMC	1,49934			-0,95558	-0,60608
	BDMC	1,35533			-1,08653	
	CUR			1,11939		1,91367
18C-17C-23O	DMC			-0,92362		
	BDMC			-0,89876		
17C-23O-37H	CUR	1,67529			-0,98458	
	DMC	1,63024			-1,16093	
	BDMC	2,07718			-1,08955	
	CUR					
11C-12C-24O	DMC	-0,76014				
	BDMC					
	CUR					
12C-24O-39C	DMC	0,54149				
	BDMC					
	CUR	-0,89255				-0,74299
17C-18C-43O	DMC					
	BDMC					
	CUR	0,55688		0,75257		-0,65846
18C-42O-43C	DMC					
	BDMC					

Fonte: Danilo Melle de Proença, 2023.

Analisando variações angulares da Tabela 2 (Tabela A6, A7 e A8), percebeuse que foram observadas variações maiores que 0,5º para mais e para menos, na água e em etanoato de etila, das seguintes formas: na forma Cátion-Radical, entre os carbonos de 1 a 7 (região central da molécula), houve uma redução nos ângulos entre os átomos em ambos os CM's, e na região do enol e dos fenóis, houve um aumento nos ângulos.

Na forma Enol-Radical, os ângulos das ligações entre 4C-5C-6C e 5C-6C-7C tiveram redução e entre 6C-7C-14C houve aumento em ambos os CM's. Houve, também, divergência entre os CM's, nos ângulos 1C-2C-3C e 2C-3C-4C, nos quais a CUR e DMC tiveram uma redução e a BDMC teve um aumento. Já nos ângulos 4C-3C-22O e 4C-5C-21O ocorreu o oposto. Na forma Fenol-Radical, a CUR, nos ângulos 18C-17C-23°, teve aumento, enquanto as outras moléculas tiveram uma redução. Somente na DMC e BDMC houve uma redução entre os ângulos 6C-7C-14C, e aumento entre os ângulos 4C-5C-210.

As formas Enolata e Fenolata apresentaram padrão nas moléculas, que aumentaram e reduziram o ângulo de ligação de forma significativa.

Conclui-se que as formas CR e FENOL-RAD apresentam ângulos mais próximos de 120°, o que favorece a deslocalização eletrônica. Além disso, as variações ocorrem na região do ENOL e FENOL, mostrando que as ligações de hidrogênio entre o grupo OH, na região do enol, em todas as formas radicalares, desprotonadas e fenol, somente no cátion radical, são mais reativas. Com ressonância entre os átomos de carbonos na região central.

A partir desses dados, percebe-se que há uma formação de uma ligação intramolecular nas regiões do enol e cetona, pois durante a transferência de próton, há um encurtamento das ligações entre os átomos de carbono e oxigênio (C-O) e um alongamento entre os carbono-carbono próximos dessa região, auxiliando a transferência de H. Tal transferência é também confirmada pela grande variação dos ângulos de ligação nessas regiões, demonstrando uma simetria entre os átomos.

Quando se analisa as cargas dos átomos dos CM's, na forma protonada e desprotonada (Tabela A9, A10 e A11), percebe-se que os oxigênios têm cargas negativas em todos os conjuntos e que são doadores, mas a carga dos átomos de carbono é influenciada variando carga positiva e negativa. Essas mudanças de carga acontecem devido à polarização da molécula. Percebe-se, ainda, que essas cargas se distribuem ao longo das nuvens eletrônicas das moléculas, demonstrando interações moleculares por ressonância a fim de estabilizar e manter o equilíbrio.

Quanto à carga dos átomos, as diferenças mais significativas, maiores ou iguais a 0,1 ocorreram das seguintes formas:

 Cátion Radical (CR): na CUR, houve um aumento de carga nos átomos C4 (no meio da cadeia, favorecendo a clivagem), C14 (carbono que liga o anel aromático à cadeia poli-insaturada), O23 (do fenol adjacente ao enol) em todos os solventes e uma redução no átomo C6, na DMC e BDMC. Houve um aumento de carga nos átomos C4 em todos os solventes e uma redução nos átomos C9 e C14 em solvente apolar, e no átomo O23 houve aumento em solvente polar.

- Enol Radical (ENOL-RAD): na CUR, houve um aumento de carga nos átomos com dupla ligação na cadeia poli-insaturada C1, C2, C6, C7, C17, no carbono principal C4, nos oxigênios do enol O21 e na cetona O22. Sendo que esses três últimos apresentaram as maiores variações. Houve redução de carga nos átomos C3, C5, C16 em todos os solventes. Nas moléculas de DMC e BDMC, houve um aumento de carga nos átomos O22 (cetona) e redução no C5 (enol) em todos os solventes. Em meio polar, houve aumento nos átomos C4, C6, C7, C9, C15, e redução no C8 e C14. No meio apolar, houve aumento nos átomos C8 e O21 e redução no C3 e C9.
- Fenol Radical (FENOL-RAD): na CUR, houve um aumento de carga nos átomos C16, C17 (próximos ao fenol) e O43 (metoxi adjacente ao enol) em ambos os solventes, e no O23 somente em solvente apolar. Já na questão da redução, houve somente no C6 e O23, em água. Nas moléculas de DMC e BDMC, houve um aumento de carga no átomo C18 e redução no C15 em ambos os solventes. Em meio somente polar, houve aumento no átomo C16, e no meio apolar, houve aumento no C6.
- Enolato: na molécula de CUR, houve um aumento de carga nos átomos C2, C7, C9 e redução de carga nos átomos C3, C4, C5, C14 e O20, em todos os solventes. No C16, a carga reduziu em solvente polar e aumentou em apolar; na forma e nas moléculas DMC e BDMC, houve um aumento de carga nos átomos C3, C6, C9 e redução de carga nos átomos C5, C8 e C14 em todos os solventes.
- Fenolato: na molécula de CUR, houve aumento de carga somente no C17 e redução nos átomos C3, C6, C14 e O23 nos dois solventes, nas moléculas de DMC e BDMC não houve aumento significativo no parâmetro pré-estabelecido, mas houve redução de carga nos átomos C15 e O23 nos dois solventes.

Ao analisar a variação de cargas dos CM's, nos diversos estados estudados, percebe-se que a molécula CUR-CR tem mais interação no lado da função fenol e nas

moléculas de DMC-CR e BDMC-CR há mais interação na cadeia principal, ao lado da função do enol. Nas moléculas na forma ENOL-RAD e ENOLATO, em ambos os curcuminóides, há uma interação maior na região do enol e do fenol, e na forma FENOL-RAD e FENOLATO do lado do fenol adjacente ao enol. Com estes resultados é possível, juntamente com o Mapa de Densidade de *Spin*, justificar quais moléculas estão com carga mais negativa ou positiva e quais átomos influenciam para este resultado.

Em um processo oxidativo, a molécula que perde um elétron ganha uma unidade de carga em sua distribuição de potencial eletrostático (Tabela A9, A10, A11, A12, A13, A14) e apresenta as variações de cargas parciais nos átomos dos CM's ao se oxidarem de enol para cátion radical ou de enolato ou fenolato para seus respectivos radicais. Nota-se, ainda, que o ganho de carga não é localizado em apenas um átomo, mas deslocalizado em um conjunto de átomos.

Esta deslocalização se dá de forma semelhante às densidades de *spin*, reforçando o caráter estável destas espécies reativas, que será abordado logo a seguir, pois as propriedades antioxidantes decorrem da formação de radicais por causa dos grupos hidroxiaromáticos (fenol) e da extensa deslocalização de carga através das moléculas (VAN ACKER et al., 1996; ANTONCZAK, 2008; APARICIO, 2010).

5.2 Análise de NBO

Ao analisar as ligações π e σ dos CM's (Tabela B1, B2 e B3) percebe-se que as ligações π possuem maior capacidade de doação de elétrons do que a ligação σ (GLENDENING; STREITWIESER, 1994; MAHMOUDZADEH; KOUCHAKZADEH, 2022). Na molécula de CUR, as ocupações π NBO's das ligações do anel benzênico, próximo do fenol C10-C11 (1,64340), C6-C17 (1,64408), C8-C9 (1,65072), C14-C15 (1,65208), C12-C13 (1,71015), C18-C19 (1,71111) e da região central da molécula C4-C5 (1,74618) apresentam menor ocupação, portanto, possuem o doador de elétrons de mais forte capacidade entre todos os NBO's de ligação.

Na molécula de DMC, as ligações π NBO's das ligações do anel benzênico, próximo do fenol adjacente ao enol, apresentam os maiores valores de ocupação,

sendo estes C17-C18 (1,99453), C17-O23 (1,99453), O23-H37 (1,98718), logo na região do grupo metoxi C39-H41 (1,99398) e C12-O43 (1,98972), e C39-O43 (1,99382), no grupo cetônico C3-O22 (1,9937), na região fenol C11-O20 (1,9929) e O20-H35 (1,98407) e do enol O21-H36 (1,98467). Apresentaram, também, menores ocupações na região dos anéis benzênicos C8-C13 (1,66118) e C14-C19 (1,64066), portanto, possuem o doador com maior possibilidade entre todos os NBO's de ligação.

Ao analisar as ligações π e σ da BDMC, percebe-se que as ligações π possuem maior capacidade de doação do que a ligação σ . As ligações π NBO's das ligações do anel benzênico, próximo do fenol C08-C13 (1,64289), C11-C12 (1,64772), C18-C19 (1,69561), C14-C15 (1,65208), C9-C10 (1,71086), C15-C16 (1,71144) e da região central da molécula C4-C5 (1,76107), apresentam menor ocupação, portanto, possuem o doador com maior possibilidade entre todos os NBO's de ligação.

Ao comparar os três curcuminóides (Tabela 3) no quesito da antiligação, utilizando parâmetros NBO, é possível perceber, através da tabela abaixo, que os oxigênios dos fenóis possuem uma maior força de aceitação do que a região dos enóis, sendo que quando é feita a comparação da região fenol, a BDMC > DMC > CUR e na região do enol, a DMC > BDMC > CUR.

As maiores interações de doação com os receptores dentro das moléculas ocorrem com os fenóis e o enol de cada molécula e estes interagem de forma bem significativa com o restante de todos os átomos. Na molécula de CUR, o O20 possui maiores valores de energia, seguido pelo O21. Já na DMC, as maiores interações são do O21 seguido pelo O23 e, por fim, na BDMC, O21 seguido pela O22 e O23.

Tabela 3 Comparação dos valores LP dos átomos de oxigênio							
	CUR DMC BDMC						
O20 (fenol)	1,97953	1,98093	1,98101				
O23 (fenol)	1,97951	1,97951	1,98100				
O21 (enol)	1,97339	1,97467	1,97392				
O22 (cetona)	1,97001	1,97080	1,97054				

Fonte: Danilo Melle de Proença, 2023.

O par solitário (LP) (Tabela B4, B5 e B6) para o aceitador da interação da antiligação, está relacionado com a ressonância na molécula, isto é, devido à deslocalização de elétrons do átomo de O20 (cetona), O21 (enol) e O23 (fenol adjacente ao enol) com o restante da molécula. Na molécula de CUR, é mais evidente na conjugação entre os elétrons dos doadores e aceitadores como LP O20 à BD* C16-

C17 e LP O23 à BD*C16-C17 do grupos fenóis e LP O21 à BD* C44 - H 45, LP O 21 à BD* C 39 - H 40, LP O 21 à BD* C8-C9, LP O21 à BD* C10-C11, LP O21 à BD* C10-H31 e LP O21 à BD* C6-C7 do grupo enol.

Na molécula de DMC, é mais evidente na conjugação entre os elétrons dos doadores e aceitadores como na região do enol LP O21 à BD*(2)C6-C7, LP O21 à BD*C11-O20 e LP O21 à BD*C15-C16 e na região do fenol LP O23 à BD*17-C18 e LP O23 e BD*C6-C7. Na molécula de BDMC, é mais evidente na conjugação entre os elétrons dos doadores e aceitadores como LP C14 à BD* C6-C7 da região do fenol para a cadeia principal, LP O21 à BD* C4-C5 do enol para a cadeia principal, LP O22 à BD* C3-C4 do grupo cetônico para a cadeia principal, e LP O20 à BD*C11-C12, LP O23 à BD* C4-C5 e LPO23 à BD* C12-C13 do grupo fenóis para os anéis benzênicos.

Contudo, percebe-se que esses três oxigênios das moléculas interagem de forma significativa com todos os outros átomos mostrando uma ressonância na molécula e estabilização desta. Essas várias interações entre os NBO's preenchidos e os NBO's vazios mostram a transferência de carga intramolecular na molécula.

As Tabelas B4, B5 e B6 mostram a população de antiligantes dos orbitais, BD*, e também como é a deslocalização de carga entre a molécula nos seus diversos estados estudados. Tal análise é necessária para entender a independência de cada parte da molécula quando a reatividade é considerada (ANTONCZAK, 2008).

É notável perceber que a ligação de hidrogênio pode ser analisada considerando uma transferência de carga entre o doador e o receptor, através da transferência de carga induzida por hiperconjugação entre os pares solitários de elétrons de oxigênio correspondentes (doador) e os orbitais antiligantes. De acordo com a literatura de métodos NBO, devem ser consideradas para analisar a ligação de hidrogênio: energia de perturbação de segunda ordem, diferença de energia entre o doador e o receptor Fock, elemento da matriz entre o doador e aceitador (APARICIO, 2010).

Quando a molécula CUR segue pelo mecanismo ET, a deslocalização permanece na região central da molécula para forma CUR-CR. Nas moléculas de DMC e BDMC ao seguirem pelo mecanismo ET, a deslocalização se desloca para a região do fenol adjacente ao enol. Quando ambos CM's seguem pelo mecanismo HAT, é seguido a forma ENOL-RAD, continua no centro da molécula e a forma FENOL-RAD do lado do enol (saindo do fenol oposto ao enol fluindo para a região central até o fenol adjacente do enol).

Ao analisar as cargas NPA - Tabela 4 (Tabela B7, B8 e B9), de ambas as moléculas, os oxigênios do fenol e do enol apresentam valores bem negativos, indicando que a densidade de carga se concentra nessa região, mas com ressonância em toda a molécula quando muda os estados de cada uma. É notável que em ambas as moléculas o oxigênio do enol (O21) se destaca com a menor carga dos demais, sugerindo que ele tem a maior facilidade de realizar a doação de elétron e que é mais acessível ao ataque de radicais, atuando como um ótimo antioxidante nessa posição, seguido do fenol adjacente ao enol.

	Tabela 4 Comparação das carga NPA para os átomos de oxigênios LP's								
		NEUTRA	CR	ENOL-RAD	FENOL-RAD	ENOLATO	FENOLATO		
		0/1	1/2	0/2	0/2	-1/1	-1/1		
	CUR	-0,6860	-0,6460	-0,6880	-0,6870	-0,7040	0,6960		
O20	DMC	-0,2980	-0,6330	-0,6860	-0,6860	-0,7040	-0,6950		
	BDMC	-0,6850	-0,6540	-0,6850	-0,6830	-0,6850	-0,6970		
	CUR	-0,7190	-0,6980	-0,5150	-0,7200	-0,7270	-0,7280		
O 21	DMC	-0,7290	-0,6980	-0,4790	-0,7400	-0,7330	-0,7490		
	BDMC	-0,7030	-0,6980	-0,4440	-0,7030	-0,4440	-0,7580		
	CUR	-0,6850	-0,6580	-0,5170	-0,6840	-0,6450	-0,7270		
022	DMC	-0,6840	-0,6630	-0,5160	-0,6800	-0,6460	-0,7270		
	BDMC	-0,6830	-0,6470	-0,4240	-0,6700	-0,4240	-0,7550		
	CUR	-0,6860	-0,6320	-0,6880	-0,5170	-0,7050	-0,7700		
O23	DMC	-0,6850	-0,6490	-0,6850	-0,5420	-0,7020	-0,7960		
	BDMC	-0,6850	-0,6320	-0,6850	-0,5310	-0,6850	-0,6990		

Fonte: Danilo Melle de Proença, 2023

Ao checar as deslocalizações das moléculas (Figuras B1, B2 e B3), utilizando dados de NBO, percebe-se que, para a formação, o CR se difere nos curcuminóides. Na CUR, apresenta deslocalização na região central da molécula dos fenóis para o enol, nas DMC e BDMC apresentam deslocalização do fenol, passando pelas ligações duplas do centro da molécula para o fenol adjacente ao enol. Para a formação do ENOL-RAD, os três curcuminóides apresentam deslocalização dos fenóis para o enol; apresentam deslocalização do fenol, passando pelas ligações duplas do centro da molécula para o fenol adjacente ao enol.

Um mecanismo antioxidante envolve não apenas a formação de subprodutos com propriedades semelhantes, mas pode envolver outras interações dentro do organismo e/ou célula, podendo ser também: eliminação e/ou neutralização de espécies reativas, inibição de enzimas oxidativas, interação com oxigênio (reduzindo sua disponibilidade para reações oxidativas), interação com a cascata oxidativa com inibição de sua propagação, quelação ou desativação de propriedades oxidativas de íons metálicos (NAMRATHA et al., 2013).

Nos curcuminóides, a atividade básica antioxidante está relacionada na região das hidroxilas do fenol e do enol (alguns relacionam esta região como o grupo do metileno da região central), sendo que esta atividade antioxidante está relacionada diretamente à doação do átomo hidrogênio. Na região do fenol, o hidrogênio, ao ser doado, faz com que a molécula se torne um fenol-radical, o que acarreta a ocorrência da estabilização por ressonância do anel aromático (Figura 12) (SUETH-SANTIAGO et al., 2015; STANIĆ, 2017).

Figura 12 - Mecanismo antioxidante dos CM's envolvendo a doação de hidrogênio pelo fenol e a representação da estabilização do radical formado por ressonância

Fonte: (SUETH-SANTIAGO et al., 2015; STANIĆ, 2017)

Na molécula de CUR, para a formação de CUR-FENOL-RAD entre os átomos 17C-23O, sua ordem de ligação aumenta $(1,032 \rightarrow 1,637)$ e na molécula de BDMC sua ordem de ligação aumenta $(1,017 \rightarrow 1,608)$ indicando uma ligação do tipo dupla, confirmando a ação antioxidante neste local como previsto na literatura. Na molécula

de DMC, os valores encontrados não são tão evidentes quanto nos outros curcuminóides, mas os seus valores, entre estes átomos, são de ressonância (1,357 \rightarrow 1,249).

De forma semelhante ao que acontece no enol, os hidrogênios do fenol, estando completamente disponíveis para a formação de radical-enol, faz com que ocorra a estabilização destes por ressonância. Nesta região, pode-se originar um grupo metileno na central dos curcuminóides no C4, ressaltando que ligações CH neste carbono são mais fracas devido à ressonância (Figura 13).

Figura 13 - Mecanismo antioxidante dos CM's envolvendo a doação de hidrogênio pelo enol e a representação da estabilização do radical formado por ressonância

Fonte: (SUETH-SANTIAGO et al., 2015; STANIĆ, 2017)

Na molécula de CUR, para formar CUR-ENOL-RAD entre os átomos 4C=5C sua ordem de reação diminui (1,486 \rightarrow 1,127) configurando uma ligação com característica simples, e entre os átomos 5C-21O sua ordem de ligação aumenta (1,112 \rightarrow 1,664) indicando uma ligação do tipo dupla. Na molécula de BDMC, para formar CUR-ENOL-RAD entre os átomos 4C=5C, a ordem de reação diminui (1,503 \rightarrow 1,288) configurando uma ligação com característica simples, e entre os átomos 5C-21°, a ordem de ligação aumenta (1,136 \rightarrow 1,347), indicando uma ligação do tipo dupla. A molécula de DMC apresenta, na região do enol, átomos adjuntos com ligação tipo ressoante entre 4C=5C (1,342 \rightarrow 1,371) e entre 5C-21° (1,325 \rightarrow 1,320).

Ao utilizar, também, as ordens de ligação (Tabela B10, B11 e B12), na Figura 14, percebe-se que as moléculas CUR e BDMC novamente apresentam semelhanças na ruptura das moléculas. Já a molécula de DMC não seguiu da mesma forma. No método ET, onde há a doação de elétron para formar cátion radical, a ligação entre o

4C=5C pode enfraquecer e ocorrer a quebra, de igual forma já previsto na literatura para a CUR.

Outro detalhe no método ET, é que as ligações 1C=2C e 6C=7C são enfraquecidas durante o processo e pode ocorrer quebra, em seguida, na região. Na forma HAT ou ET →ET-PT para formar ENOL-RAD, a ligação entre o 4C=5C pode enfraquecer e ocorrer a quebra, de igual forma já previsto na literatura para a CUR (KAWAKISHI, 1996; JOVANOVIC et al., 1999; YOUSSEF et al., 2007; SUETH-SANTIAGO et al., 2015), mas para formar FENOL-RAD, somente na CUR, pode ocorrer quebra entre 6C=7C e na DMC no 17C-23O.

Fonte: Danilo Melle de Proença, 2023

Na literatura há vários autores que descrevem a quebra entre o 4C=5C, o que pode acarretar a formação de ácido ferúlico e, caso ocorra a quebra entre o 5C=6C, a formação da vanilina e ferúlo metano (JOVANOVIC et al., 1999; YOUSSEF et al., 2007; SUETH-SANTIAGO et al., 2015; ZHU et al., 2017; TSUDA, 2018). Estes

produtos ilustrados na Figura 15 são importantes para explicar as atividades biológicas da curcumina após a ruptura, sendo estes o ácido ferúlico e vanilina que exibem propriedades antioxidantes e atividades anti-inflamatórias. Vale ainda ressaltar que a vanilina, juntamente com o ácido ferúlico, pode ser usada para combater vários tipos de câncer (HUANG et al., 1988; DETERS et al., 2008; SHEN; JI, 2012; WRIGHT et al., 2013; SILVERSTEIN; HELLER, 2017; TSUDA, 2018).

Da mesma forma, a BDMC quebra-se nas mesmas localidades, podendo gerar outros subprodutos conforme ilustrado na Figura 16. Supostamente, estes fragmentos mantêm grande parte da atividade antioxidante observada na molécula inicial, devido ao sistema fenólico conjugado permanecer estabilizado, sendo eles: (2E)-3-(4-hidroxifenil) ácido-prop-2-enóico (ácido cinâmico), (2E)-3-(4-hidroxifenil)prop-2-enal (cinamaldeído), (2E)-3-(4-hidroxifenil)but-3-en-2-ona, sendo o ácido cinâmico. O ácido cinâmico apresenta propriedades antimicrobianas e antifúngicas (EKMEKCIOGLU; FEYERTAG; MARKTL, 1998), inibição de células cancerígenas e aumento de produção de melanina (BANG et al., 1994; BANG; ERICSEN; AARHAKKE, 1994; PRASAD et al., 1994; EKMEKCIOGLU; FEYERTAG; MARKTL, 1998) e apresenta propriedades anti-inflamatórias e antioxidantes (SOARES, 2002; SOVA, 2012); já a molécula de cinamaldeído apresenta propriedades antimicrobianas, antibacterianas (GILL; HOLLEY, 2006; SHREAZ et al., 2016) e antioxidantes (ANDRADE et al., 2012).

Fonte: Danilo Melle de Proença, 2023

5.3 Análise Potencial Eletrostático e Densidade de Spin

As áreas negativas (cor vermelha) do MEP foram relacionadas à reatividade eletrofílica e as áreas positivas (cor azul) à reatividade nucleofílica mostradas na Figura 17 (Figuras C1, C2 e C3). As moléculas CUR, DMC e BDMC mostram que a região da cetona/enol apresentam-se regiões mais eletronegativas (em vermelho/laranja), de modo que podemos concluir que as interações podem ser favorecidas nesses sítios.

De acordo com o mapa MEP dos CM's, a região negativa dos compostos concentra-se principalmente nos átomos de oxigênio da hidroxila da região do fenol e enol, maior intensidade de cor na molécula de ENOLATO e FENOLATO, podendo ocorrer ataque eletrófilo.

Quanto à densidade de spin, a forma do CR está mais carregada positivamente, demostrando que é melhor solubilizado em lipídios biológicos, pois revela que os átomos de carbono exibem a maior afinidade para ataques nucleofílicos.

Ao analisar a forma do ENOL-RAD, são apresentadas semelhanças as da forma neutra, sugerindo que as interações de hidrogênio das moléculas de água ocorrerão na região da cetona/enol. Já na forma FENOL-RAD, a molécula apresenta um potencial positivo bem intensificado na região do fenol.

Figura 17 - Densidade de Spin da BDMC e de suas formas radicalares e protonadas

Fonte: Danilo Melle de Proença, 2023

Por outro lado, estruturas neutras são favorecidas em meios hidrofóbicos. Em relação à molécula neutra, esta pode se tornar um cátion radical para exercer sua ação antioxidante nesta região, acoplando radicais livres nocivos presentes ou movendo-se como um cátion radical para o meio aquoso. Na água, ele pode entrar em um equilíbrio ácido-base diferente desse cátion radical estável, que doando um próton, torna-se um radical livre estável que deve retornar ao meio lipídico de forma dinâmica em uma ação de eliminação radical.

Conforme ilustrado nas figuras C1, C2 e C3, todos os mecanismos apresentados acima podem coexistir favorecidos pelo ambiente biológico naturalmente bifásico. Enquanto o HAT é favorecido em um meio hidrofóbico, o ET-PT deve ocorrer em meio aquoso mais ácido ou ET em meio alcalino.

Ao analisar os valores de densidade de *spin* (Figura 18), a CUR e BDMC têm semelhanças na correção dos mesmos átomos de interferirem na mudança de densidade de *spin*, mas a DMC apresenta grande divergência destas, pois apresenta diferença na região do seu grupo metoxi. Ambas as moléculas apresentam maior deslocalização eletrônica na forma do FENOL-RAD do que as demais formas, podendo, por apresentar mais sítios de ligação radicalar, atuar como maior sequestrante de radical livre. Tal ideia vai de encontro com os valores de LP encontrados nas análises de NBO. As moléculas poderiam formar ENOL-RAD, e de acordo com as análises de NBO, isso poderia ocorrer preferencialmente na CUR e

BDMC, mas apresentar deslocalização na região do enol e cetona, e este tipo de molécula é pouco estável.

É notório observar que nos átomos C4, C14, O21, O22 e O23 ocorrem sítios de ligação com outras moléculas. Ao comparar os três curcuminóides, na forma cátion radical, somente a BDMC no C4 apresentou altos valores de densidade de *spin* e na CUR baixos valores. Quando se compara as outras regiões prováveis para acoplamento, as moléculas CUR e BDMC são semelhantes, apresentando sítios nos átomos adjacentes ao enol. Na DMC ocorre de forma contrária. Tais resultados têm semelhanças nos orbitais de deslocalização da molécula e nas regiões ligantes e antiligantes.

Figura 18 - Análise de probabilidade de acoplamento nos CM's

Fonte: Danilo Melle de Proença, 2023

Na forma ENOL-RADICAL, os três curcuminóides apresentaram possibilidades de acoplamento nos mesmos átomos, mas variando a sua intensidade, sendo que na CUR e DMC no C4 apresentaram-se os maiores valores de densidade de *spin*, enquanto na BDMC ocorreu nos oxigênios da cetona (O22) e do enol (O21). Na forma FENOL-RADICAL, os três curcuminóides apresentaram os mesmos padrões, sendo no C14 os maiores valores, nos átomos C6 e O23 os valores médios e no C4 baixa densidade de *spin*.

5.4 Propriedades Termodinâmicas

Os valores para Δ H foram semelhantes para todas as moléculas estudadas. Elas foram submetidas sob temperatura 298,15K e pressão de 1atm. O método ET apresentou o menor valor, seguido pelo HAT e pelo ET-PT. A Figura 17 do MEP mostra que a energia livre de Gibbs Δ G, para as formas estudadas dos CM's, diminuiu nos estados de transição, mas o sinal positivo para Δ G demonstrou a não espontaneidade da reação, sendo os valores em ordem: ET<HAT<ET-PT (Tabelas D1, D2 e D3).

Para as moléculas estudadas, a entropia de ativação ΔS das reações da CUR, pelo método ET, em solvente polar, diminuiu, mas em solvente polar aumentou, já no método HAT diminuiu em solvente polar somente para a molécula CUR-FENOL-RAD e aumentou para forma CUR-ENOL-RAD, e em solvente apolar, houve um aumento. Já no método ET-PT, diminuiu em solvente polar somente para a molécula CUR-FENOLATO e aumentou para forma CUR-ENOLATO. Com estes dados pode-se indicar qual molécula está mais próxima do seu estado de equilíbrio termodinâmico, sendo portanto, pouco reativa e consequentemente havendo um aumento no tempo necessário para formar o complexo ativado, no método ET. No método HAT aumentou, demonstrando instabilidade no equilíbrio termodinâmico, possibilitando que o sistema reaja de forma mais rápida para produzir o complexo ativado em função da sua alta reatividade.

Estudos já realizados na curcumina comprovaram que a estabilidade do fenol radical é superior à região do enol /ou do grupo metileno, mas ambos atuam na atividade antioxidante (PRIYADARSINI, 2014; STANIĆ, 2017). É possível perceber que ambos os curcuminóides apresentam mais espontaneidade para formar FENOL-RAD confirmando que esta característica se estende aos demais. Quando verifica-se

a variação da entalpia do sistema e a entropia do sistema em ambas as moléculas, o método ET-PT não é favorecido, pois é uma reação exotérmica e, ao mesmo tempo, diminui sua entropia, já nos outros mecanismos na CUR e DMC são favorecidos os métodos ET seguido pelo HAT, e na molécula BDMC, o contrário.

5.5 Detalhamento das configurações eletrônicas dos CM's com a variação de polaridade, pKa e índices HOMO/LUMO

Quando se compara o momento dipolo - Tabela 5 (Tabelas E1, E2 e E3) das moléculas, a CUR neutra apresenta valores maiores que a DMC e BDMC em ambos os solventes, sendo que em solvente polar apresenta um valor maior que no meio apolar. Em ambas as formas protonadas e desprotonadas, o meio polar se destacou acima do meio apolar, com exceção do FENOL-RAD na BDMC.

Tabela 5 Comparação momento dipolo							
	meio	CUR	DMC	BDMC			
noutra	Polar	+++	++	+			
neutra	Apolar	+++	++	+			
CP	Polar	+++	++	+			
CK	Apolar	+++	++	+			
ENOL-RAD	Polar	+	++	+++			
	Apolar	+	+++	++			
	Polar	+	++	+++			
ENOLATO	Apolar	+	++	+++			
	Polar	+	++	+++			
FENOL-RAD	Apolar	+	++	+++			
	Polar	+	+++	++			
FENOLATO	Apolar	+	+++	++			
Legenda:							
+++ → alta	++ → média + → baixa						

Fonte: Danilo Melle de Proença, 2023.

Pode-se constatar que a CUR apresentou maior momento dipolo na forma CUR-CR em ambos os solventes; a DMC apresentou média momento dipolo, se destacando apenas na forma DMC-FENOLATO que apresentou maiores valores em ambos os solventes e na forma DMC-ENOL-RAD em meio apolar. A BDMC apresentou maior momento dipolo acima das outras moléculas na forma BDMC-ENOLATO e BDMC-FENOL-RAD e na forma BDMC-ENOL-RAD, somente em solvente polar e na forma BDMC-FENOLATO, momento dipolo menor que a DMC. Assim, em ambas as moléculas, a ordem decrescente de momento dipolo segue da seguinte forma: FENOLATO> CR > ENOLATO> FENOL-RAD > ENOL-RAD > neutra.

Outro fator importante a ser levado em consideração, além da polaridade do solvente, é o pH deste. De acordo com a literatura, a curcumina é um ácido fraco apresentando pKa com valores de 7,7 a 10,5. Dependo da região da molécula, acontece a desprotonação em meio alcalino, sendo que tal desprotonação, conforme foi observado, influencia na absortividade molar da molécula, gerando uma curvatura mais intensa no espectro UV-VIS (BERNABÉ-PINEDA et al., 2004; STANKOVIC, 2004; PRIYADARSINI, 2014; SUETH-SANTIAGO et al., 2015).

É possível perceber pelas análises de pKa (Tabela 6), que pelo método ET, o CR apresenta um pKa menor que as formas protonadas e desprotonadas, indicando que é um ácido-fraco, e as demais formas possuem uma característica alcalina-forte.

Caso os curcuminóides sejam colocados em um pH abaixo de 6, a forma protonada é favorecida, sugerindo que a molécula HA (ácido fraco) possa permear através das membranas celulares. Se os curcuminóides forem colocados em pH maior que 9,6 a forma desprotonada será favorecida, sugerindo que a molécula HB+ (base fraca) pode liberar H+ e não possa permear através das membranas celulares, somente a sua forma não ionizada. Em ambos os curcuminóides, se fossem colocados em pH entre 6,1 a 9,3 poderiam ter a formação de moléculas protonadas e desprotonadas pelos métodos ET e HAT.

Tabela 6 Comparação dos valores de pKa dos CM's									
	$ET \rightarrow ET-PT$			H	AT	ET-PT à ET			
	neutra → CR	CR → ENOLRAD	CR → FENOLRAD	CUR→ ENOLRAD	CUR→ FENOLRAD	CUR→ ENOLATO	ENOLATO → ENOLRAD	CUR → FENOLATO	ENOLATO
CUR	6,15	9,42	9,42	9,40	9,41	9,49	6,07	9,70	5,87
DMC	6,35	9,13	9,28	9,31	9,47	9,65	5,83	9,64	5,99
BDMC	6,16	10,16	9,45	10,17	9,46	9,51	6,81	9,67	5,94

Fonte: Danilo Melle de Proença, 2023.

A dureza (Equação 3) e a maciez (Equação 6) absolutas são propriedades importantes para medir a estabilidade molecular e a reatividade. Uma molécula que apresenta um GAP alto apresenta uma dureza elevada e quanto menor, maior a maciez. A facilidade de transferência de elétrons ocorreu na CR, ENOL-RAD e FENOL-RAD, sendo estas as moléculas com maior maciez. Já os maiores valores de dureza foram encontrados nas moléculas ENOL-RAD e ENOL-RAD, demonstrando

que estas formas, após doarem elétrons, apresentam maior estabilidade na molécula, e a forma CR ainda é bem reativa, conforme a densidade de spin.

Em relação ao potencial de ionização (I) (Equação 1) de ambas as moléculas, as formas cátion radical, enol radical e fenol radical possuem os maiores valores, visto que já ocorreu a perda de elétrons, sendo que os maiores valores são apresentados em ordem decrescente da seguinte forma: DMC > BDMC > CUR.

Ao analisar cada molécula na CUR, os maiores valores são a CUR-CR > CUR-ENOL-RAD > CUR-FENOL-RAD; na DMC, os maiores valores são DMC-CR > DMC-FENOL-RAD > DMC-ENOL-RAD e na BDMC, os maiores valores são BDMC-CR > BDMC-FENOL-RAD > BDMC-ENOL-RAD. Com esses dados é possível verificar que na CUR, a forma Enol é superior ao Fenol, indicando a probabilidade de saída do elétron. Quando se analisa a aceitação de elétrons nos curcuminóides, a forma FENOL-RAD > ENOL-RAD > CR. Porém, a forma enol apresenta maior dureza que a forma fenol, indicando maior estabilidade.

No quesito de reatividade (Equação 2) dos curcuminóides, nas formas FENOL-RAD e ENOL-RAD, percebe-se que esta última apresenta os maiores valores, mas ambas apresentam valores que indicam serem mais estáveis no quesito cinética e reatividade. Na análise de eletronegatividade (Equação 4), os melhores eletrófilos (capacidade de atrair elétrons) são encontrados em ordem crescente: CUR > DMC > BDMC, na CUR e DMC, a forma Enolato é predominante, e na BDMC, o Fenolato.

Tabela 7 Comparativo da fração de transferência de elétrons							
	CUR	DMC	BDMC				
neutra	+++	+	++				
CR	+++	+	++				
ENOL-RAD	+	+++	++				
ENOLATO	+	+	+++				
FENOL-RAD	+	++	+++				
FENOLATO	++	+	+++				
Legenda: +++ → alta	++ → m	nédia +	→ baixa				

Fonte: Danilo Melle de Proença, 2023.

No índice de eletrofilicidade (ω) (Equação 7), para verificar a tendência de doar elétrons (Tabela 7), percebe-se que tal fenômeno ocorre nas formas desprotonadas Enolato e Fenolato e na forma cátion radial, sendo que na forma CR é maior que as demais formas e os maiores valores são encontrados na CUR > BDMC > DMC, mas nas outras formas, nas moléculas de CUR e DMC, ocorrem preferencialmente na

forma Enolato e na BDMC, Fenolato. Com isso, é possível prever a forte corrente de elétrons da parte doadora para a aceitadora, já nas formas DMC e BDMC, é na forma Fenol.

Ao verificar o melhor doador de elétrons para moléculas antioxidantes, pelo índice de fração de transferência de elétrons, a molécula de CUR se destaca apenas pelo cátion radical, a DMC pela formação do enol radical e a BDMC pela formação do fenol radical, Enolato e Fenolato. Tais valores concordam com os valores dos *gap's* (HOMO, LUMO e SOMOS) das moléculas para verificar sua reatividade, e na CUR, a molécula CUR-CR apresenta o menor valor. Na DMC, foi a molécula DMC-ENOL-RAD, e na BDMC, foram as moléculas BDMC-ENOLATO, BDMC-FENOL-RAD e BDMC-FENOLATO.

Ao analisar os CM's no vácuo, no meio polar e apolar, deve se levar em consideração que a molécula pode ser doadora de hidrogênio, doadora de elétrons e doadora de hidrogênio e elétron ao mesmo tempo.

Quanto à molécula de CUR, conforme demonstra a Figura 19 (Tabela E7 e Figuras E4, E5 e E6), ao ser analisada no vácuo, sem interferência do solvente, percebeu-se que a forma de Transferência de Elétron (ET) é bem favorecida, pois quando uma molécula passa do estado neutro e se torna um Cátion Radical (Radical Livre) apresenta uma diminuição da energia de seus orbitais (-6,8630 e.V para -9,3493 e.V) mais que nas outras formas radicalares. Outro fato é seu gap de 1,9306 e.V que é menor do que as formas radicalares, o que apresenta que esta molécula é bem reativa.

A CUR-CR, por ser reativa, apresenta uma tendência de ocorrer a Transferência de Átomos de Hidrogênio (HAT), neste caso, pode ocorrer a doação do hidrogênio da parte enólica ou fenólica da molécula, podendo ser gerados dois subprodutos como a CUR-ENOL-RAD (-7,1631e.V.) ou CUR-FENOL-RAD (-6,7168 e.V), sendo favorecida a formação do CUR-ENOL-RAD por possuir menor estado energético.

Ao analisar o gap das duas formas, percebe-se que a forma CUR-ENOL-RAD (5,7155e.V) apresenta maior energia que a forma CUR-FENOL-RAD (4,8763e.V) indicando que esta é mais estável, o que reforça os parâmetros de NBO, demonstrando que a região do ENOL é mais suscetível à perda de hidrogênio.

Figura 19 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR no vácuo (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

A molécula de DMC (Tabelas E8 e Figuras E7, E8 e E9), ao ser analisada no vácuo sem interferência do solvente, demonstra que a forma de Transferência de Elétron (ET) é bem favorecida, pois quando uma molécula passa do estado neutro e se torna um Cátion Radical (Radical Livre) apresenta uma diminuição da energia de seus orbitais (-7,0442 e.V para -10,1466 e.V). A DMC-CR, por ser reativa, apresenta a tendência de Transferência de Átomos de Hidrogênio (HAT), neste caso, pode ocorrer a doação do hidrogênio da parte enólica ou fenólica da molécula, podendo ser gerados dois subprodutos como a DMC-ENOL-RAD (-7,2015e.V.) ou DMC-FENOL-RAD (-7,3359e.V), sendo favorecida a formação do DMC-FENOL-RAD por possuir menor estado energético. Ao analisar o gap das duas formas, percebe-se que a forma DMC-ENOL-RAD (4,0956e.V) apresenta maior energia que a forma DMC-FENOL-RAD (3,8635e.V) indicando que esta é mais estável, o que reforça os parâmetros de NBO, demonstrando que a região do ENOL é mais suscetível à perda de hidrogênio.

Figura 20 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC no Vácuo (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

Ao ser analisada no vácuo sem interferência do solvente, a molécula de BDMC - Figura 20 (Tabelas E9 e Figuras E10, E11 e E12) favorece a Transferência de Elétron (ET), pois quando uma molécula passa do estado neutro e se torna um Cátion Radical (Radical Livre) apresenta uma diminuição da energia de seus orbitais (-7,0341 e.V para -10,0611 e.V), mais que nas outras formas radicalares, outro fato a ser considerado é seu gap de 2,5326 e.V que é menor que as formas radicalares, o que mostra que esta molécula é bem reativa. A BDMC-CR, por ser reativa, apresenta uma tendência a Transferência de Átomos de Hidrogênio (HAT), neste caso, pode ocorrer a doação do hidrogênio da parte enólica ou fenólica da molécula, podendo ser gerados dois subprodutos como a BDMC -ENOL-RAD (-7,0657e.V.) ou C BDMC -FENOL-RAD (-7,0896 e.V), sendo favorecida a formação do BDMC -FENOL-RAD por possuir menor estado energético. Ao analisar o gap das duas formas, percebe-se que a forma BDMC-ENOL-RAD (3,6099e.V) indicando que esta é mais estável, o que reforça os parâmetros de NBO, demonstrando que a região do ENOL é mais suscetível à perda de hidrogênio.

Dessa forma, conclui-se das análises dos orbitais de fronteira (FMO's), em ambos os curcuminóides, que a forma HAT se destaca por apresentar menor energia em relação às demais formas. Aplicando o método ET em ambos os mecanismos, a forma enol demonstra ser mais reativa que a forma fenol. Já na forma ET-PT, em ambos os curcuminóides, pode ser que ocorra, mas com uma alta energia e em condições mais ácidas. Tal resultado corrobora os dados de NBO e da reação de transferência de elétrons. Em geral, pode-se notar que na molécula da CUR e BDMC, ao se oxidarem para cátion radical ou de Enolato e Fenolato para seus radicais, o ganho de carga não está localizado em apenas um átomo, mas deslocalizado em um conjunto de átomos, demonstrando o caráter estável destas espécies reativas em ambos os solventes, o que não ocorre com a DMC que demonstra o contrário.

Ao analisar os orbitais HOMO, LUMO e SOMOS, juntamente com os dados de NBO de ligante e não ligante, a molécula de CUR (HOMO) ao se tornar CUR-CR terá a preferência de se formar SOMOS β não variando a sua deslocalização na molécula, mas ao se tornar CUR-ENOL-RAD haverá a preferência de apresentar a forma SOMOS β com deslocalização mais intensa na região do enol, na forma CUR-FENOL-RAD, haverá a preferência de se tornar a forma SOMOS α com deslocalização mais intensa na região do enol, na forma CUR-FENOL-RAD, haverá a preferência de se tornar a forma SOMOS α com deslocalização mais intensa na região do enol, na forma CUR-FENOL-RAD, haverá a preferência de se tornar a forma SOMOS α com deslocalização mais intensa na região do fenol.

A forma HOMO para a CUR é formada por quatorze orbitais moleculares espaciais, sendo que alguns desses orbitais atômicos com significantes coeficientes sobrepõem-se três a três (tridentados) e se distribuem ao longo da cadeia com características ligantes, as regiões com oxigênio mostram características antiligantes, aumentando consideravelmente a energia nesse orbital. Não há muita diferença no HOMO e LUMO para a estrutura em fase gasosa e em solução (Figuras E13, E14 e E15).

A forma HOMO da CUR neutra mostra ser deslocalizada nas ligações π sobre toda a estrutura conjugada. Um fato que pode ser visto é que mesmo os oxigênios dos dois grupos metoxi -OCH₃ estando ligeiramente envolvidos no HOMO, não estão envolvidos no LUMO, já a forma enólica está bem envolvida na deslocalização eletrônica estrutural. Com base nesta análise HOMO e LUMO, pode-se concluir que a transformação da CUR em radicais envolve a perda de um elétron do HOMO para se tornar SOMOS α β auxiliado pela transferência de elétrons do orbital π HOMO para o orbital antiligante π^* LUMO.

Ao analisar os orbitais HOMO, LUMO e SOMOS, juntamente com os dados de NBO de ligante e não ligante, a molécula de DMC (HOMO) ao se tornar DMC-CR terá

a preferência de se tornar a forma SOMOS α que apresenta pouca variação na sua deslocalização na molécula, mas ao se tornar DMC-ENOL-RAD haverá a preferência de se tornar a forma SOMOS β com deslocalização mais intensa na região do enol, na forma DMC-FENOL-RAD haverá a preferência de apresentar a forma SOMOS β com deslocalização mais intensa na região do fenol.

A forma HOMO neutra para a DMC é formada por doze orbitais moleculares espaciais, sendo que alguns desses orbitais atômicos com significantes coeficientes sobrepõem-se três a três (tridentado) e se distribuem ao longo da cadeia com características ligantes. As regiões com oxigênio mostram características antiligantes, aumentando consideravelmente a energia nesse orbital. Não há muita diferença no HOMO e LUMO para a estrutura em fase gasosa e em solução (Figuras E16, E17 e E18).

A forma HOMO da DMC neutra mostra ser deslocalizada nas ligações π sobre a estrutura conjugada devido às antiligações. Um fato que pode ser visto é que mesmo os oxigênios dos grupos metoxi -OCH₃ estando ligeiramente envolvidos no HOMO, não estão envolvidos no LUMO, já a forma enólica está bem envolvida na ligação. Com base nesta análise HOMO e LUMO, pode-se concluir que a ligação entre a DMC e o SOMOS α β – DMC-CR é auxiliada pela transferência de elétrons do orbital π HOMO para o orbital antiligante π * LUMO.

Ao analisar os orbitais HOMO, LUMO e SOMOS, juntamente com os dados de NBO de ligante e não ligante, a molécula de BDMC (HOMO) ao se tornar BDMC-CR terá preferência de se tornar a forma SOMOS α que apresenta pouca variação na sua deslocalização, mas ao se tornar BDMC-ENOL-RAD haverá a preferência de se tornar a forma SOMOS α com deslocalização mais intensa na região do enol, na forma BDMC-FENOL-RAD haverá a preferência de se tornar a preferência de se apresentar a forma SOMOS β com deslocalização mais intensa na região do enol.

A forma HOMO neutra para a BDMC é formada por onze orbitais moleculares espaciais, sendo que alguns desses orbitais atômicos com significantes coeficientes sobrepõem-se três a três (tridentado) e se distribuem ao longo da cadeia com características ligantes. As regiões com oxigênio mostram características antiligantes, aumentando consideravelmente a energia nesse orbital. Não há diferença significativa no HOMO e LUMO para a estrutura em fase gasosa e em solução (Figuras E19, E20 e E21).

A forma HOMO da BDMC neutra mostra ser deslocalizada nas ligações π sobre a estrutura conjugada devido às antiligações. Um fato que pode ser visto na forma LUMO é que na região dos fenóis, as ligações tridentadas são desfeitas e estes não estão envolvidos no LUMO. Com base nesta análise HOMO e LUMO, pode-se concluir que a ligação entre a BDMC e o SOMOS α β – BDMC-CR é auxiliada pela transferência de elétrons do orbital π HOMO para o orbital antiligante π * LUMO.

5.6 Estudos de LogP

A curcumina tem característica lipofílica que apresenta boa permeação pelas membranas celulares, sendo de grande importância a sua atividade biológica em nível celular (NOORAFSHAN; ASHKANI-ESFAHANI, 2013). De acordo com a literatura, o logP da curcumina pode variar de 2,3 a 3,2 demonstrando insolubilidade em água quando em temperatura ambiente e pH neutro. Tais resultados da CUR, obtidos pelo método escolhido, apresentam valores bem próximos como previsto na literatura (HEGER et al., 2014; NELSON et al., 2017). Dentre os três curcuminóides (Tabela 8), a BDMC apresentou os melhores valores no estado neutro, protonado e desprotonado, seguida pela DMC e CUR por apresentar valores de LogP entre 2,43 a 2,54.

Tabela 8 Valores de LogP dos CM's								
	NEUTRA CR ENOL-RAD FENOL-RAD ENOLATO FENOLA							
	0/1	1/2	0/2	0/2	-1/1	-1/1		
CUR	3,21	3,04	3,04	3,04	3,35	3,21		
DMC	2,97	2,97	2,97	2,97	2,93	2,96		
BDMC	2,43	2,48	2,48	2,43	2,54	2,43		

Fonte: Danilo Melle de Proença, 2023

5.7 UV-VIS e IR

A estrutura da curcumina possui ligações do tipo C-O, O-H, duplas entre carbonos (C=C) e carbono-oxigênio (C=O). Devido a estas ligações estarem presentes dentro da molécula, é possível obter resultados por UV-VIS. Análises comerciais publicadas mostram bandas de 280~420nm em água com pH de 6,1 e em solução de álcool e água 429nm. Em outros estudos nos quais são utilizados solventes polares com tratamentos ácidos, a curcumina apresentou um pico de maior

intensidade na região de 425nm. Outros estudos envolvendo DMSO, metanol e acetonitrila obtiveram três bandas de absorção nas regiões de 265, 374 e 427 (ZSILA; BIKÁDI; SIMONYI, 2003; PARIZE, 2009; KIM et al., 2013; ISMAIL et al., 2014; RANGEL et al., 2021).

Ao verificar as figuras F1, F2 e F3, o espectro UV-VIS da curcumina em etanol para a funcional M062X/6-311++G(2d,p) apresenta ser *un típico* cromóforo, no qual um átomo ou um grupo de átomos absorvem radiação, apresentando uma intensidade de absorção de 400 a 600nm. Há a formação de três bandas de absorção: a primeira com maior pico de intensidade de 482 nm, a segunda com um pico médio de intensidade de 242nm e a terceira, um pico menor de 196 nm. As diferenças nos comprimentos de onda podem apresentar emissões diferentes, pois dependem do extrato e dos solventes utilizados (SUETH-SANTIAGO et al., 2015). Em etanol, podem apresentar comprimentos na faixa espectral com valores de 450 a 610.

Na DMC, houve a formação de três bandas de absorção: a primeira com maior pico de intensidade de 473nm, a segunda com um pico médio de intensidade de 243nm e a terceira, com um pico menor de 185nm. E na BDMC, houve a formação de três bandas de absorção: a primeira com maior pico de intensidade de 470nm, a segunda com um pico médio de intensidade de 235nm e a terceira, um pico menor em 184nm.

As bandas de baixa intensidade correspondem a uma transição $\sigma \rightarrow \sigma^*$, enquanto a banda média corresponde a uma transição $\pi \rightarrow \pi^*$, e as bandas maiores a uma transição $n \rightarrow \pi^*$ ou a uma combinação das transições $\pi \rightarrow \pi^*$ e $n \rightarrow \pi^*$, esta característica é atribuída às transições que ocorrem entre orbitais de fronteira, elétrons (π) ligantes e antiligantes. Outro fato importante é que a geometria planar, na forma enol, permite a conjugação dos elétrons π com os carbonos hibritizados sp², na região central da molécula, a qual resulta a coloração amarelada ao extrato e ao sofrer desprotonação, pode resultar em uma coloração avermelhada com a mudança de pH (BALASUBRAMANIAN, 1990; KIM et al., 2013; ISMAIL et al., 2014; PRIYADARSINI, 2014; SUETH-SANTIAGO et al., 2015; VAN NONG et al., 2016).

Os espectros para as três moléculas estudadas da curcumina em etanol, presentes nas figuras F4, F5 e F6 e as bandas características, estão descritos na tabela F1. Nesse sentido, foram observadas alterações somente na região do fenol e nas demais não foram observadas alterações significativas dos valores em relação às

bandas teóricas. Os espectros UV-VIS mostraram bandas características na região 3839-3852 cm⁻¹ referentes às vibrações do grupo OH livre do fenol. As bandas intensas em 1703 a 1732 cm⁻¹ referem-se à vibração do grupo carbonila C=O. As bandas 1332 a 1362 cm⁻¹ referentes às vibrações C=C do anel aromático e alongamento da ligação C-O. Bandas das regiões de 1017 a 1096 cm⁻¹ *bending* do grupo C=O do grupo éter. Na região de 737 a 754 cm⁻¹ são referentes a C-H dos grupos alcenos.

Os espectros para as três moléculas estudadas da demetoxicurcumina, em etanol, estão apresentadas nas figuras F7, F8 e F9, das bandas características estão descritas na tabela F2. Foram observadas alterações somente na região do fenol e nas demais não foram observadas alterações significativas dos valores em relação às bandas teóricas. Os espectros UV-VIS mostraram bandas características na região 3850-3860 cm⁻¹ referentes às vibrações do grupo OH livre do fenol. As bandas intensas em 1611 a 1684 cm⁻¹ referem-se à vibrações C=C do anel aromático e alongamento da ligação C-O. Bandas das regiões de 1234 a 1276 cm⁻¹ *bending* do grupo C=O do grupo éter. Na região de 748 a 751 cm⁻¹ são referentes a C-H dos grupos alcenos.

Os espectros para as três moléculas estudadas da BDMC, em etanol, estão presentes nas figuras F10, F11 e F12 e as bandas características estão descritas na tabela F3. Foram observadas alterações somente na região do fenol e nas demais não foram observadas alterações significativas dos valores em relação às bandas teóricas. Os espectros IV mostraram bandas características na região 3851-3877 cm⁻¹ referentes às vibrações do grupo OH livre do fenol. As bandas intensas em 1706 cm⁻¹ referem-se à vibrações C=C do anel aromático e alongamento da ligação C-O. Bandas das regiões de 1014 a 1060 cm⁻¹ *bending* do grupo C=O do grupo éter. Na região de 648 a 990 cm⁻¹, são referentes a C-H dos grupos alcenos.

6 CONCLUSÃO

Neste trabalho, foi feito um estudo detalhado sobre as estruturas moleculares eletrônicas dos três curcuminóides presentes na *Curcuma longa* L., sendo estes a curcumina, demetoxicurcumina e bisdemetoxicurcumina. As suas atividades antioxidantes foram relacionadas às possíveis configurações eletrônicas em diferentes polaridades e acidez do meio, através da Teoria Funcional da Densidade, utilizando o funcional M06-2X com as bases 6-311++G(2d,p). Para cada curcuminóide foram desenhadas as formas neutras, radicalares e desprotonadas e otimizadas no vácuo, na água (polar) e em etanoato de etila (apolar).

As ordens de títulos NBO calculadas demonstram que entre os átomos C17-O23 de CUR aumenta de 1,032 para 1,637 para formar um radical fenol, e BDMC aumenta menos, de 1,017 \rightarrow 1,608 na mesma transformação. A remoção de um átomo de hidrogênio aumenta estes sem interferência nas ordens de ligação ressonantes do anel aromático. Fato que pode estar relacionado à atividade antioxidante preferencial nesta porção.

O radical enol segue o mesmo caminho, aumentando as ordens de ligação C5-O21 e C3-C4 após a remoção do hidrogênio, promovendo mais deslocalização eletrônica nesta porção ceto-enol. Além disso, a ordem de ligação C4-C5 do CUR vai de 1,486 a 1,127, e do BDMC vai de 1,503 a 1,288 nessa transformação, enfraquecendo a ligação no meio da molécula e favorecendo a degradação deste átomo mais significativamente para CUR. Por outro lado, as mesmas ordens de títulos para DMC não apresentam mudanças significativas.

Ambas as moléculas exibem maior deslocalização do elétron desemparelhado na forma do radical fenol em comparação às configurações do radical cátion ou do radical enol. Espera-se que essa deslocalização melhore sua atividade como sequestradores de radicais livres, pois eles têm mais possibilidades de acoplamento de radicais. A forma do radical enol reduz a deslocalização no meio da molécula, o que pode favorecer a degradação. As densidades de spin mais significativas foram observadas nos átomos C4, C14, O21, O22 e O23.

Ao comparar os curcuminóides na forma de cátion radical, o BDMC apresentou um alto valor de densidade de spin em C4, em contraste com um baixo valor para CUR. Na forma ENOL-RADICAL, todos os três curcuminóides mostraram possível
acoplamento nos mesmos átomos, mas com variação de intensidade. Em CUR e DMC, os maiores valores de densidade de spin foram observados em C4, enquanto em BDMC, ocorreu no oxigênio cetônico (O22) e no oxigênio enólico (O21). Na forma FENOL-RADICAL, todos os três curcuminóides exibiram os mesmos padrões: os valores mais altos em C14, valores intermediários nos átomos C6 e O23 e baixa densidade de spin em C4.

Nos três CM's, ao verificar a reatividade dos átomos de oxigênio, através do par solitário (LP) da antiligação, demonstrou-se que a região dos fenóis é responsável pelo processo de ressonância da molécula em consonância com o enol, pois apresentam maiores valores. Na molécula de BDMC, foram obtidos os maiores valores de 1,981 enquanto na CUR e DMC, de 1,979. Já no oxigênio do enol, o maior valor foi na molécula da DMC, de 1,974 e na CUR e DMC de 1,973.

Outra propriedade na qual a BDMC se destaca é que esta apresenta baixa capacidade de atrair elétrons, pois ela tem uma capacidade de doação melhor que os demais curcuminóides, de acordo com a análise NBO efetuada, ocorrendo preferencialmente na região do fenol. O oxigênio do enol (O21) se destaca com a menor carga dos demais oxigênios, sugerindo que ele tem a maior facilidade de realizar a doação de elétron (CUR -0,71, DMC -0,72 e BDMC -0,70) sendo mais acessível ao ataque de radicais e atuando como ótimo antioxidante somente nas formas de CR e FENOL-RAD, e na forma ENOL-RAD se destaca (O23) com valores de -0,68 para ambos os CM's. A fração de elétrons transferidos (ΔN) de moléculas estudadas indicam que as moléculas com maiores propriedades antioxidantes estão na CUR-CR (7,968), BDMC (6,237), BDMC-FENOL-RAD (3,403) e DMC-ENOL-RAD (2,967).

Quando se analisa as propriedades termodinâmicas dos curcuminóides, a BDMC se destaca pela preferência de seguir pelo método HAT do que a CUR e BDMC para formar fenol-radical. Outro ponto positivo é que as formas radicalares da BDMC são mais solúveis em meios polares e apolares que as demais. A molécula de CUR apresentou pKa com valores de 6,15 a 9,49, DMC 6,35 a 9,65 e a BDMC 6,16 a 10,17.

Tanto os grupos fenólicos OH quanto os grupos enólicos OH possuem prótons ionizáveis, sendo o enólico o mais ácido com pKa < 9,10 e os fenólicos com pKa < 9,20. No caso do BDMC, quando exposto a um pH abaixo de 6, a forma protonada é favorecida, sugerindo que essa molécula pode permear as membranas celulares. A

forma desprotonada é favorecida se os curcuminóides forem submetidos a um pH superior a 9,6, sugerindo que esta molécula provavelmente irá permear no meio aquoso.

A BDMC exibiu os menores valores de logP nos estados neutro, protonado e desprotonado (valores de 2,43 a 2,54), seguido por DMC (2,93 a 2,97) e CUR (3,04 a 3,35), demonstrando claramente a influência dos grupos metoxi na solubilidade em água. Nesse contexto, as configurações eletrônicas, características do BDMC, podem ser usadas para ilustrar os mecanismos antioxidantes dos curcuminóides, como a prevenção da oxidação fosfolipídica em meio hidrofóbico ou qualquer outro acoplamento radical em meio aquoso para neutralizar radicais nocivos; devendo considerar todas as possíveis reações com radicais livres (R[°]).

Sendo assim, a atividade antioxidante da BDMC pode ser mais significativa entre a ação antioxidante dos curcuminóides do que vem sendo relatado, evidenciando-se apenas a curcumina. A BDMC é mais planar, mais solúvel em água e com radicais livres mais estabilizados por ressonância e, portanto, pode exercer uma maior varredura de ROS no meio biológico, uma vez que apresentou solubilidade em solventes polares compatível com a disponibilidade no plasma e pode ser favorecida na incorporação em vesículas formadas por fosfolípideos e membranas lipoproteicas.

Enfim, este trabalho foi capaz de detalhar características específicas dos três curcuminóides e, portanto, sugere e incentiva a realização de mais estudos com estas moléculas isoladamente, a fim de se aprimorar as suas aplicações medicinais.

7 REFERENCIAS

ABREU-QUIJANO, M. et al. Quantum chemical study of 2-mercaptoimidazole, 2mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole and 2-mercapto-5nitrobenzimidazole as corrosion inhibitors for steel. International Journal of Electrochemical Science, v. 6, n. 9, p. 3729–3742, 2011.

AIHARA, J. I. Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. *Journal of Physical Chemistry A*, v. 103, n. 37, p. 7487–7495, 1999.

AKBAS, E.; ERGAN, E.; DONMEZ, H. Quantum Chemical Calculations for Corrosion Inhibition of **Pyrimidine Derivatives.** *Technology, Engineering & Mathematics (EPSTEM)*, v. 6, n. I, p. 142–147, 2019. Disponível em: <www.isres.org>.

ALAŞALVAR, C. et al. Molecular structure, Hirshfeld surface analysis, spectroscopic (FT-IR, Laser-Raman, UV-vis. and NMR), HOMO-LUMO and NBO investigations on N-(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide. *Journal of Molecular Structure*, v. 1171, p. 696–705, 2018.

ALI, J. et al. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. *Journal of Chemical Information and Modeling*, v. 52, n. 2, p. 420–428, 2012.

ALLENT, L. C. .; KARO, A. M. Basis Functions for Ab InitioCalculations. *Reviews of Modern Physics*, v. 32, p. 275–285, 1960.

ALLOUCHE, A. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. *Journal of computational chemistry*, v. 32, p. 174–182, 2012.

ANAND, P. et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. *Biochemical Pharmacology*, v. 76, n. 11, p. 1590–1611, 2008.

ANDRADE, M. A. et al. Essential oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: Composition, antioxidant and antibacterial activities. *Revista Ciencia Agronomica*, v. 43, n. 2, p. 399–408, 2012.

ANJOMSHOA, S.; NAMAZIAN, M.; NOORBALA, M. R. The Effect of Solvent on Tautomerism, Acidity and Radical Stability of Curcumin and Its Derivatives Based on Thermodynamic Quantities. *Journal of Solution Chemistry*, v. 45, n. 7, p. 1021–1030, 2016.

ANTONCZAK, S. Electronic description of four flavonoids revisited by DFT method. *Journal of Molecular Structure: THEOCHEM*, v. 856, n. 1–3, p. 38–45, 2008.

APARICIO, S. A systematic computational study on flavonoids. International Journal of Molecular Sciences, v. 11, n. 5, p. 2017–2038, 2010.

ARNOTT, J. A.; PLANEY, S. L. **The influence of lipophilicity in drug discovery and design.** *Expert Opinion on Drug Discovery*, v. 7, n. 10, p. 863–875, 2012.

BALASUBRAMANIAN, K. **Two colorful applications of the PPP method.** *International Journal of Quantum Chemistry*, v. 37, n. 4, p. 449–463, 1990.

BALASUBRAMANIAN, K. Molecular orbital basis for yellow curry spice curcumin's prevention of Alzheimer's disease. *Journal of Agricultural and Food Chemistry*, v. 54, n. 10, p. 3512–3520, 2006.

BANG, B. E.; ERICSEN, C.; AARHAKKE, J. Effects of CAMP and cGMP Elevating Agents on HL - 60

Cell Differentiation. Pharmacology & Toxicology, v. 75, n. 2, p. 108-112, 1994.

BANG, Y. J. et al. **Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP.** *Proceedings of the National Academy of Sciences of the United States of America*, v. 91, n. 12, p. 5330–5334, 1994.

BASILE, V. et al. Curcumin derivatives: Molecular basis of their anti-cancer activity. *Biochemical Pharmacology*, v. 78, n. 10, p. 1305–1315, 2009.

BENASSI, R. et al. Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV-vis and IR experimental data. *Journal of Molecular Structure*, v. 892, n. 1–3, p. 168–176, 2008. Disponível em: http://dx.doi.org/10.1016/j.molstruc.2008.05.024>.

BERNABÉ-PINEDA, M. et al. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, v. 60, n. 5, p. 1091–1097, 2004.

BEZERRA, P. Q. M. et al. ESTUDO PROSPECTIVO DA Curcuma longa L. COM ÊNFASE NA APLICAÇÃO COMO CORANTE DE ALIMENTOS. Cadernos de Prospecção, v. 6, n. 3, p. 366–378, 2013.

BORGES, M. S. Análise das mudanças sócio-econômicas, tecnológicas e ambientais no APL do Açafrão em Mara Rosa e região – Goiás (1997 – 2009). 2009.

BRAGA, R. C. **Açafrão da terra**, **propriedades e usos.** p. 1–9, 2015. Disponível em: https://paisagismodigital.com/noticias/?id=acafrao-da-terra-propriedades-e-usos-%7C-paisagismodigital&in=419.

BRASIL. Farmacopeia Brasileira. 5. ed. [s.l: s.n.]v. 2

BRASIL. **MONOGRAFIA DA ESPÉCIE Curcuma longa L.** (CURCUMA). *Ministério da Saúde*, v. 5, p. 1–150, 2015.

BRASIL, M. D. S. Programa Nacional de Plantas Medicinais e Fitoterápicos. 1ª ed. [s.l: s.n.]

BRENEMAN, C. M.; WIBERG, K. B. Determining atom - centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. *Journal of Computational Chemistry*, v. 11, n. 3, p. 361–373, 1990.

BUYUKUSLU, H. et al. **Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole.** *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, v. 75, n. 4, p. 1362–1369, 2010. Disponível em: http://dx.doi.org/10.1016/j.saa.2010.01.003>.

CHENG, T. et al. **Computation of octanol-water partition coefficients by guiding an additive model with knowledge.** *Journal of Chemical Information and Modeling*, v. 47, n. 6, p. 2140–2148, 2007.

CHIMIE, R. R. De. Quantum Chemical Investigations On Phenyl-7, 8-Dihydro- [1,3]-Dioxolol QUANTUM CHEMICAL INVESTIGATIONS. v. 6, n. November 2016, 2014.

CID, L. R. Synthesis and characterization of curcuminoids and their derived polymeric systems. 2021.

CLASSEN, J. et al. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. *Analytical and Bioanalytical Chemistry*, v. 409, n. 3, p. 651–666, 2017. Disponível em: http://dx.doi.org/10.1007/s00216-016-0068-x.

COLLINO, L. Curcumina: de especiaria à nutracêutico. Aleph, 2014.

COSTA, J. C. S. et al. **Optical band gaps of organic semiconductor materials.** *Optical Materials*, v. 58, p. 51–60, 2016.

CRAMER, C. J. *Essentials of Computational Chemistry Theories and Models Second Edition.* [s.l: s.n.]

DAINA, A.; MICHIELIN, O.; ZOETE, V. Supporting Information to iLOGP: a simple, robust and efficient description of n -octanol / water partition coefficient for drug-design using the GB / SA approach . J. Chem. Inf. Modelo, v. 54, p. 3284–3301, 2014.

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports*, v. 7, n. October 2016, p. 1–13, 2017.

DEB, M. Concept in. n. January, 1973.

DETERS, M. et al. Different curcuminoids inhibit T-lymphocyte proliferation independently of their radical scavenging activities. *Pharmaceutical Research*, v. 25, n. 8, p. 1822–1827, 2008.

DEY, G.; CHAKRABORTY, A. Tautomers of homophthalic anhydride in the ground and excited electronic states: analysis through energy, hardness and vibrational signatures. *Journal of Molecular Modeling*, v. 26, n. 7, 2020.

DUPONT, S. et al. Antioxidant properties of ergosterol and its role in yeast resistance to oxidation. *Antioxidants*, v. 10, n. 7, 1 jul. 2021.

EKMEKCIOGLU, C.; FEYERTAG, J.; MARKTL, W. **Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells.** *Cancer Letters*, v. 128, n. 2, p. 137–144, 1998.

EMANUEL, D. et al. Propriedades termodinâmicas de grãos de milho. v. 2013, p. 50–56, 2013.

EREZ, Y. et al. Temperature dependence of the fluorescence properties of curcumin. *Journal of Physical Chemistry A*, v. 115, n. 40, p. 10962–10971, 2011.

EROS, D. et al. Reliability of logP Predictions Based on Calculated Molecular Descriptors: A Critical Review. Current Medicinal Chemistry, v. 9, n. 20, p. 1819–1829, 2012.

FU, H. et al. Electronic effects of the substituent on the dioxygen-activating abilities of substituted iron tetraphenylporphyrins: a theoretical study. *Journal of Molecular Modeling*, v. 21, n. 4, p. 1–10, 2015.

FUKUI, K. Role of frontier orbitals in chemical reactions. Science, v. 218, n. 4574, p. 747–754, 1982.

GALANO, A. et al. **Role of the reacting free radicals on the antioxidant mechanism of curcumin.** *Chemical Physics*, v. 363, n. 1–3, p. 13–23, 2009. Disponível em: http://dx.doi.org/10.1016/j.chemphys.2009.07.003>.

GILL, A. O.; HOLLEY, R. A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. *International Journal of Food Microbiology*, v. 108, n. 1, p. 1–9, 2006.

GLENDENING, E. D.; STREITWIESER, A. Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor-acceptor interactions. *The Journal of Chemical Physics*, v. 100, n. 4, p. 2900–2909, 1994.

GORDON, O. N. et al. Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIa. Chemical

Research in Toxicology, v. 28, n. 5, p. 989–996, 2015.

GOSS, K. Thermodynamic Estimate of p K a Values of the Carboxylic Ac-. *Environ. Sci. Technol.*, v. 42, n. 2, p. 456–458, 2008.

GOVINDARAJAN, V. S. Turmeric-chemistry, technology, and quality. [s.l: s.n.]v. 12

GUO, F. et al. A supramolecular complex of hydrazide-pillar[5]arene and bisdemethoxycurcumin with potential anti-cancer activity. *Bioorganic Chemistry*, v. 110, 1 maio 2021.

GUPTA, U. et al. A Combined Experimental and Density Functional Theory Computational Studies on Curcumin: A Bio-Active Ingredient of Rhizome Turmeric. *Materials Focus*, v. 4, n. 5, p. 346–356, 2015.

HABIBI, D. et al. Application of supported Mn(iii), Fe(iii) and Co(ii) as heterogeneous, selective and highly reusable nano catalysts for synthesis of arylaminotetrazoles, and DFT studies of the products. *RSC Advances*, v. 4, n. 88, p. 47625–47636, 2014. Disponível em: http://dx.doi.org/10.1039/C4RA06463A>.

HADISAPUTRA, S. et al. Density functional and perturbation calculation on the corrosion inhibition performance of benzylnicotine and its derivatives. *AIP Conference Proceedings*, v. 2243, 2020.

HAMID, N.; MUNAIM, M. S. A. An Adsorption Kinetic and Thermodynamic Study of Dyeing Betacyanin Extract from Dragon Fruit skin onto the Spun Silk and Acrylic Yarn . *Australian Journal of Basic and Applied Sciences*, v. 11, n. 4, p. 33–41, 2017.

HEGER, M. et al. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancers. *Pharmacological Reviews*, v. 66, n. 1, p. 222–307, 2014.

HUANG, M. T. et al. Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-Acetate. *Cancer Research*, v. 48, n. 21, p. 5941–5946, 1988.

INDIRA PRIYADARSINI, K. Chemical and Structural Features Influencing the Biological Activity of Curcumin. *Current Pharmaceutical Design*, v. 19, n. 11, p. 2093–2100, 2013.

ISMAIL, E. H. et al. Synthesis and Characterization of some Ternary Metal Complexes of Curcumin with 1,10-phenanthroline and their Anticancer Applications. *Journal of Scientific Research*, v. 6, n. 3, p. 509–519, 2014.

JAYAPRAKASHA, G. K.; JAGANMOHAN RAO, L.; SAKARIAH, K. K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. *Food Chemistry*, v. 98, n. 4, p. 720–724, 2006.

JOSHI, B. D.; TANDON, P.; JAIN, S. Differential Scanning Calorimetry, NBO and Hyperpolarizability Analysis of Yohimbine Hydrochloride. *Himalayan Physics*, v. 3, p. 44–49, 2012.

JOVANOVIC, S. V et al. JavanovicSV99JACS_Hのtransferが抗酸化活性に大事.pdf. Journal of the American Chemical Society, n. 14, p. 9677–9681, 1999.

KALAVATHY, M. H. et al. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO 4-activated rubber wood sawdust. *Journal of Colloid and Interface Science*, v. 292, n. 2, p. 354–362, 2005.

KARTHICK, T.; TANDON, P. Computational approaches to find the active binding sites of biological targets against busulfan. *Journal of Molecular Modeling*, v. 22, n. 6, 2016. Disponível em: http://dx.doi.org/10.1007/s00894-016-3015-z>.

KAWAKISHI, S. Antioxidative of the P-Diketone Moiety in the Mechanism of Tetrahydrocurcumin. *Science*, v. 52, n. 4, p. 519–525, 1996. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/8759023>.

KEPP, K. P.; DASMEH, P. Effect of distal interactions on O2 binding to heme. *Journal of Physical Chemistry B*, v. 117, n. 14, p. 3755–3770, 2013.

KHALID, M. et al. Exploration of Noncovalent Interactions, Chemical Reactivity, and Nonlinear Optical Properties of Piperidone Derivatives: A Concise Theoretical Approach. *ACS Omega*, v. 5, n. 22, p. 13236–13249, 2020.

KHEMALAPURE, S. S. et al. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Vis), ELF, LOL, NBO, and Fukui function investigations on (5-bromo-benzofuran-3-yl)-acetic acid hydrazide (5BBAH): Experimental and theoretical approach. *Journal of Molecular Structure*, v. 1196, p. 280–290, 2019. Disponível em: https://doi.org/10.1016/j.molstruc.2019.06.078>.

KIM, H. et al. Curcumin Efficient Dye-Sensitized Solar Cells. International Journal of Electrochemical Science, v. 8, p. 8320–8328, 2013.

KOLEV, T. M. et al. **DFT and experimental studies of the structure and vibrational spectra of curcumin.** *International Journal of Quantum Chemistry*, v. 102, n. 6, p. 1069–1079, 2005.

KRISHNAN, V. V. Thermodynamics and energy engineering. [s.l: s.n.]

LEGON, A. C.; MILLEN, D. J.; ROGERS, S. C. Spectroscopic investigations of hydrogen bonding interactions in the gas phase. I. The determination of the geometry, dissociation energy, potential constants and electric dipole moment of the hydrogen-bonded heterodimer HCN ••• HF from its microwave ro. *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, v. 370, n. 1741, p. 213–237, 1980.

LEWIS, D. E. Organizing Organic Reactions: The Importance of Antibonding Orbitals. *Journal of Chemical Education*, v. 76, n. 12, p. 1718–1722, 1999.

LEWIS, D. F. V.; IOANNIDES, C.; PARKE, D. V. Interaction of a series of nitriles with the alcoholinducible isoform of p450: Computer analysis of structure - activity relationships. *Xenobiotica*, v. 24, n. 5, p. 401–408, 1994.

LI, X. et al. **Bisdemethoxycurcumin Protection of Cardiomyocyte Mainly Depends on Nrf2/HO-1 Activation Mediated by the PI3K/AKT Pathway**. *Chemical Research in Toxicology*, v. 32, n. 9, p. 1871–1879, 16 set. 2019.

LIAO, J. H. et al. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions. *Scientific Reports*, v. 5, 2015.

LIPIN, R. et al. Piperazine-substituted derivatives of favipiravir for Nipah virus inhibition: What do in silico studies unravel? *SN Applied Sciences*, v. 3, n. 1, p. 1–18, 2021. Disponível em: https://doi.org/10.1007/s42452-020-04051-9>.

LLANO, S. et al. Antioxidant activity of curcuminoids. *Physical Chemistry Chemical Physics*, v. 21, n. 7, p. 3752–3760, 2019.

LUO, C. et al. Bisdemethoxycurcumin attenuates gastric adenocarcinoma growth by inducing mitochondrial dysfunction. *Oncology Letters*, v. 9, n. 1, p. 270–274, 1 jan. 2015.

MAHMOUDZADEH, G.; KOUCHAKZADEH, G. Theoretical study of HCX (NH 2) (X= O, S, and Se) analogues in gas phase: Electronic Structure, Natural Bond Orbital (NBO) & Natural Resonance Theory (NRT). v. 12, n. 1, p. 54–81, 2022.

MARCHI, J. P. et al. Medicinais. Arquivos de Ciência da Saúde da UNIPAR, v. 20, n. 44, p. 189–94,

2016.

MATA, A. R. et al. Identificação de compostos voláteis da cúrcuma empregando microextração por fase sólida e cromatografia gasosa acoplada à espectrometria de massas. *Ciência e Tecnologia de Alimentos*, v. 24, n. 1, p. 151–157, 2004.

MCKEE, S. A.; POGORELOV, T. V. **Determining the pKa of Simple Molecules Using Gaussian 2009.** n. September, p. 1–6, 2019. Disponível em: http://pogorelov.scs.illinois.edu/wp-content/uploads/2019/09/pKa_Estimations_Tutorial_web.pdf>.

MINKIN, V. I. Glossary of terms used in theoretical organic chemistry (IUPAC Recommendations **1999).** *Pure and Applied Chemistry*, v. 71, n. 10, p. 1919–1981, 1999.

MOHAN, P. R. K. et al. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. *Vibrational Spectroscopy*, v. 62, p. 77–84, 2012. Disponível em: http://dx.doi.org/10.1016/j.vibspec.2012.05.002>.

MORETES, D. N.; GERON, V. L. M. G. OS BENEFÍCIOS MEDICINAIS DA Curcuma longa L. (AÇAFRÃO DA TERRA). Revista Científica FAEMA, v. 10, n. 1, p. 106–114, 2019.

MOTA, A. A. R. et al. Theoretical photophysics (DFT) of fluorescent benzothiadiazole probes. *Revista Virtual de Quimica*, v. 7, n. 1, p. 357–389, 2015.

NAMRATHA, K. et al. Antioxidant and Anticancer effects of curcumin – A Review. Journal of Contemporary Medicine, v. 3, n. 2, p. 136–143, 2013.

NASRIN MASNABADI et al. Structural, Electronic, Reactivity, and Conformational Features of 2,5,5-Trimethyl-1,3,2-diheterophosphinane-2-sulfide, and Its Derivatives: DFT, MEP, and NBO Calculations. *Paper Knowledge . Toward a Media History of Documents*, p. 12–26, 2013.

NELSON, K. M. et al. **The Essential Medicinal Chemistry of Curcumin.** *Journal of Medicinal Chemistry*, v. 60, n. 5, p. 1620–1637, 9 mar. 2017. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jmedchem.6b00975>.

NOORAFSHAN, A.; ASHKANI-ESFAHANI, S. **A Review of Therapeutic Effects of Curcumin.** *Current Pharmaceutical Design*, v. 19, n. 11, p. 2032–2046, 2013.

NOUREDDINE, O. et al. Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: Molecular docking and DFT calculations. *Journal of King Saud University - Science*, v. 33, n. 2, p. 101334, 2021. Disponível em: https://doi.org/10.1016/j.jksus.2020.101334>.

OKULIK, N.; JUBERT, a H. Theoretical Analysis of the Reactive Sites of Non-steroidal Antiinflammatory Drugs. Internet Electronic Journal of Molecular Design, v. 4, p. 17–30, 2005.

PARIMITA, S. P. et al. Redetermination of curcumin: (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxy-phenyl)hepta-1,4,6-trien-3-one. Acta Crystallographica Section E: Structure Reports Online, v. 63, n. 2, p. 860–862, 2007.

PARIZE, A. L. Desenvolvimento de sistemas microparticulados e de filmes a base de quitosana e corante natural cúrcuma. Doutora em Química, área de concentração Físico-Química, v. Doutorado, p. 187, 2009.

PARR, R. G.; PEARSON, R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. *Journal of the American Chemical Society*, v. 105, n. 26, p. 7512–7516, 1983.

PARTHASARATHI, R. et al. Intermolecular reactivity through the generalized philicity concept. *Chemical Physics Letters*, v. 394, n. 4–6, p. 225–230, 2004.

PARTHASARATHY, V. A.; CHEMPAKAM, B.; ZACHARIAH, T. J. Chemistry of spices. [s.l: s.n.]

PÉREZ SCHMIT, M. C. et al. Electronic structure and conformational properties of 1H-indole-3acetic acid. *Journal of Molecular Modeling*, v. 17, n. 6, p. 1227–1239, 2011.

PLIEGO, J. R. Thermodynamic cycles and the calculation of pKa. *Chemical Physics Letters*, v. 367, n. 1–2, p. 145–149, 2003.

POWER, A. C. et al. *Ultraviolet-visible spectroscopy for food quality analysis.* [s.l.] Elsevier Inc., 2019.

PRASAD, K. N. et al. Modification of the expression of adenosine 3', 5'-cyclic monophosphateinduced differentiated functions in neuroblastoma cells by beta-carotene and d-alpha-tocopheryl succinate. *Journal of the American College of Nutrition*, v. 13, n. 3, p. 298–303, 1994.

PRIYADARSINI, K. I. The chemistry of curcumin: From extraction to therapeutic agent. *Molecules*, v. 19, n. 12, p. 20091–20112, 2014.

RAJAN, V. K.; SHAMEERA AHAMED, T. K.; MURALEEDHARAN, K. Studies on the UV filtering and radical scavenging capacity of the bitter masking flavanone Eriodictyol. *Journal of Photochemistry* and Photobiology B: Biology, v. 185, n. June, p. 254–261, 2018.

RAMAZANI, A. et al. Molecular Structure, Electronic Properties, Homo–Lumo, MEP and NBO Analysis of (N-Isocyanimino) Triphenylphosphorane (Ph3PNNC): DFT Calculations. *Journal of Structural Chemistry*, v. 59, n. 3, p. 529–540, 2018.

RANGEL, N. V. P. et al. Effect of additives on the oxidative stability and corrosivity of biodiesel samples derived from babassu oil and residual frying oil: An experimental and theoretical assessment. *Fuel*, v. 289, n. December 2020, 2021.

REED, A. E.; WEINHOLD, F. Natural localized molecular orbitals. *The Journal of Chemical Physics*, v. 83, n. 4, p. 1736–1740, 1985.

REVATHY, S. et al. Isolation , **Purification and Identification of Curcuminoids from Turmeric (Curcuma longa L .) by Column Chromatography.** *Journal of Experimental Sciences*, v. 2, n. 7, p. 21– 25, 2011. Disponível em: <jexpsciences.com/article/download/7767/3965...>.

SANDUR, S. K. et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. *Carcinogenesis*, v. 28, n. 8, p. 1765–1773, 2007.

SASIKUMAR, B. Genetic resources of Curcuma : diversity, characterization and utilization . *Plant Genetic Resources*, v. 3, n. 2, p. 230–251, 2005.

SCROCCO, E.; TOMASI, J. *Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials.* [s.l: s.n.]v. 11

SHARMA, R. A.; GESCHER, A. J.; STEWARD, W. P. Curcumin: The story so far. European Journal of Cancer, v. 41, n. 13, p. 1955–1968, 2005.

SHARMA, R. A.; STEWARD, W. P.; GESCHER, A. J. **Pharmacokinetics and pharmacodynamics of** curcumin. *Advances in Experimental Medicine and Biology*, v. 595, p. 453–470, 2007.

SHEIKHI, M.; BALALI, E.; LARI, H. Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study. *Journal of Physical & Theoretical Chemistry*, v. 13, n. 2, p. 155–169, 2016. Disponível em: <https://jptc.srbiau.ac.ir/article_9670.html>. SHEN, L.; JI, H. F. **Theoretical study on physicochemical properties of curcumin.** Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 67, n. 3–4, p. 619–623, 2007.

SHEN, L.; JI, H. F. The pharmacology of curcumin: Is it the degradation products? *Trends in Molecular Medicine*, v. 18, n. 3, p. 138–144, 2012.

SHREAZ, S. et al. **Cinnamaldehyde and its derivatives, a novel class of antifungal agents.** *Fitoterapia*, v. 112, p. 116–131, 2016.

SIGRIST, M. S. DIVERGÊNCIA GENÉTICA EM Curcuma longa L. UTILIZANDO MARCADORES MICROSSATÉLITES E AGROMORFOLÓGICOS. INSTITUTO AGRONÔMICO CURSO, v. CAMPINAS., 2009.

SILVERSTEIN, T. P.; HELLER, S. T. **PKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?** *Journal of Chemical Education*, v. 94, n. 6, p. 690–695, 13 jun. 2017.

SOARES, S. E. Phenolic acids as antioxidants. Revista de Nutricao, v. 15, n. 1, p. 71-81, 2002.

SOVA, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. *Mini-Reviews in Medicinal Chemistry*, v. 12, n. 8, p. 749–767, 2012.

STANIĆ, Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge – A Review. *Plant Foods for Human Nutrition*, v. 72, n. 1, p. 1–12, 2017.

STANKOVIC, I. Curcumin - Chemical and Technical Assessment. Assessment, v. 1, n. 8, p. 1–8, 2004.

SUBHAN, M. A.; ISLAM, M. M.; CHOWDHURY, M. R. U. Binding Studies and Effect of Light on the Conductance of Intercalated Curcumin into DNA. *Journal of Scientific Research*, v. 4, n. 2, p. 411, 2012.

SUDEEP, V. H. et al. In vitro gastrointestinal digestion of a bisdemethoxycurcumin-rich Curcuma longa extract and its oral bioavailability in rats. *Bulletin of the National Research Centre*, v. 45, n. 1, dez. 2021.

SUETH-SANTIAGO, V. et al. Curcumina, o pó dourado do açafrão-da-terra: Introspecções sobre química e atividades biológicas. Quimica Nova, v. 38, n. 4, p. 538–552, 2015.

TAYYARI, S. F. et al. Vibrational assignment and structure of dibenzoylmethane. **A density functional theoretical study.** *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, v. 66, n. 2, p. 394–404, 2007.

TONNESEN, HANNE HJORTH; KARLSEN, JAN; MOSTAD, A. **Structural Studies of Curcuminoids. I. The Crystal Structure of Curcumin.** *Acta Chemica Scandinavica B*, v. 36, p. 475–479, 1982. Disponível em: http://actachemscand.org/doi/10.3891/acta.chem.scand.36b-0475.

TSUDA, T. Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. *Food and Function*, v. 9, n. 2, p. 705–714, 2018.

VAN ACKER, S. A. B. E. et al. **Structural aspects of antioxidant activity of flavonoids.** *Free Radical Biology and Medicine*, v. 20, n. 3, p. 331–342, 1996.

VAN NONG, H. et al. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. *SpringerPlus*, v. 5, n. 1, 2016.

WALKER, M. et al. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. *Journal of Physical Chemistry A*, v. 117, n. 47, p. 12590–12600, 2013.

WEINHOLD, F.; LANDIS, C. R. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem. Educ. Res. Pract., v. 2, n. 2, p. 91–104, 2001.

WRIGHT, L. et al. Bioactivity of Turmeric-derived Curcuminoids and Related Metabolites in Breast Cancer. *Current Pharmaceutical Design*, v. 19, n. 34, p. 6218–6225, 2013.

XING, L.; GLEN, R. C. Novel methods for the prediction of logP, Pka, and logD. *Journal of Chemical Information and Computer Sciences*, v. 42, n. 4, p. 796–805, 2002.

YOUSSEF, D. et al. **Design, synthesis, and cytostatic activity of novel cyclic curcumin analogues.** *Bioorganic and Medicinal Chemistry Letters*, v. 17, n. 20, p. 5624–5629, 2007.

ZHANG, D. W. et al. Curcumin and diabetes: A systematic review. Evidence-based Complementary and Alternative Medicine, v. 2013, 2013.

ZHAO, X. Z. et al. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. *Journal of Molecular Structure*, v. 984, n. 1–3, p. 316–325, 2010. Disponível em: http://dx.doi.org/10.1016/j.molstruc.2010.09.049>.

ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. *Theoretical Chemistry Accounts*, v. 120, n. 1–3, p. 215–241, 2008.

ZHU, J. et al. **Potential roles of chemical degradation in the biological activities of curcumin.** *Food and Function*, v. 8, n. 3, p. 907–914, 2017.

ZSILA, F.; BIKÁDI, Z.; SIMONYI, M. Unique, pH-dependent biphasic band shape of the visible circular dichroism of curcumin-serum albumin complex. *Biochemical and Biophysical Research Communications*, v. 301, n. 3, p. 776–782, 2003.

Tabela A 1 - Comparativo do Comprimento de Ligação (Å) metodologia com experimental.											
		CUR			DMC			BDMC			
	Teo.	Exp.	Dif. (%)	Teo.	Exp.	Dif. (%)	Teo.	Exp.	Dif. (%)		
8C-1C	1,46000	1,457	0,21%	1,46000	1,457	0,21%	1,460	1,457	0,21%		
1C=2C	1,33700	1,349	-0,89%	1,33700	1,349	-0,89%	1,337	1,349	-0,89%		
2C-3C	1,47400	1,450	1,66%	1,47500	1,45	1,72%	1,475	1,450	1,72%		
3C-4C	1,43800	1,402	2,57%	1,43900	1,402	2,64%	1,439	1,402	2,64%		
4C=5C	1,37100	1,392	-1,51%	1,37100	1,392	-1,51%	1,371	1,392	-1,51%		
5C-6C	1,45400	1,457	-0,21%	1,45400	1,457	-0,21%	1,454	1,457	-0,21%		
6C=7C	1,33900	1,345	-0,45%	1,33800	1,345	-0,52%	1,338	1,345	-0,52%		
7C-14C	1,46100	1,470	-0,61%	1,46000	1,47	-0,68%	1,460	1,470	-0,68%		
3C=22O	1,24700	1,313	-5,03%	1,24600	1,313	-5,10%	1,246	1,313	-5,10%		
5C-21O	1,32100	1,315	0,46%	1,32000	1,315	0,38%	1,320	1,315	0,38%		
210-36H	1,00700	1,260	-20,08%	1,00600	1,260	-20,16%	1,006	1,260	-20,16%		
11C-20O	1,35200	1,365	-0,95%	1,35800	1,365	-0,51%	1,358	1,365	-0,51%		
20O-35H	0,96600	0,734	31,61%	0,96200	0,734	31,06%	0,962	0,734	31,06%		
17C-23O	1,35200	1,372	-1,46%	1,35800	1,372	-1,02%	1,358	1,372	-1,02%		
230-37H	0,96600	0,824	17,23%	0,96200	0,824	16,75%	0,962	0,824	16,75%		
22O36H	1,57840	1,280	23,31%	1,58405	1,280	23,75%	1,584	1,280	23,75%		
12C-24O	1,36500	1,365	0,00%	1,36500	1,365	0,00%	-	-	-		
024-39C	1,41400	1,440	-1,81%	1,41400	1,44	-1,81%	-	-	-		
18C-43O	1,36500	1,363	0,15%	-	-	-	-	-	-		
43043C	1,41400	1,431	-1,19%	-	-	-	-	-	-		

Apendice A - Parâmetros Geométricos

Legenda

Teo.: Estudo Téorico utilizando Metodologia DFT M06-2X/6-311++(2d,p) Exp. Experimental por difração de raio-X (TONNESEN, HANNE HJORTH; KARLSEN, JAN; MOSTAD, 1982; PARIMITA et al., 2007)

Dif.(%): Diferença em porcentagem entre o Teo. e Exp. Fonte: Danilo Melle de Proença, 2023

Tabela A 2 pelo méto	Tabela A 2 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos pelo método de M06-2X/6-311++(2d,p) para CUR. (em Å)											
		NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO					
		0/1	1/2	0/2	0/2	-1/1	-1/1					
	vac	1,46000	1,44350	1,45900	1,45900	1,46700	1,46600					
8C-1C	H2O	1,46000	1,45550	1,45700	1,46400	1,46700	1,46300					
	EE	1,46000	1,45200	1,45800	1,45800	1,46800	1,46400					
	vac	1,33700	1,35600	1,33700	1,33800	1,33200	1,33400					
1C=2C	H2O	1,33900	1,34300	1,34000	1,33700	1,33500	1,33800					
	EE	1,33900	1,34500	1,33900	1,34000	1,33400	1,33700					
2C-3C	vac	1,47400	1,44800	1,48700	1,47200	1,51400	1,48300					

	H2O	1,47100	1,46300	1,47700	1,47600	1,50100	1,47400
	EE	1,47100	1,45900	1,47900	1,46900	1,50400	1,47600
	vac	1,43800	1,45800	1,46800	1,44400	1,42100	1,40100
3C-4C	H2O	1,43600	1,45600	1,46700	1,41100	1,41900	1,41600
	EE	1,43600	1,46000	1,46700	1,44300	1,41900	1,41100
	vac	1,37100	1,39300	1,46800	1,36900	1,42100	1,41100
4C=5C	H2O	1,37200	1,36700	1,46700	1,39800	1,41900	1,39200
	EE	1,37200	1,36900	1,46700	1,36900	1,41900	1,39800
	vac	1,45400	1,42400	1,48700	1,45000	1,51400	1,40700
5C-6C	H2O	1,45200	1,44400	1,47700	1,42100	1,50100	1,42700
	EE	1,47200	1,44000	1,47900	1,45000	1,50400	1,42100
	vac	1,33900	1,37000	1,33700	1,34900	1,33200	1,38000
6C=7C	H2O	1,34100	1,35900	1,34000	1,36800	1,33500	1,36300
	EE	1,34000	1,36400	1,33900	1,34900	1,33400	1,36800
	vac	1,46100	1,41800	1,45900	1,43900	1,46700	1,40300
7C-14C	H2O	1,46000	1,42600	1,45700	1,41800	1,46700	1,42600
	EE	1,46000	1,42100	1,45800	1,44000	1,46800	1,41800
	vac	1,24700	1,24500	1,21700	1,24400	1,23400	1,26700
3C=22O	H2O	1,25300	1,24400	1,22500	1,26700	1,24800	1,26600
	EE	1,25200	1,24200	1,22200	1,24900	1,24400	1,26700
	vac	1,32100	1,31200	1,21700	1,32200	1,23400	1,32700
5C-21O	H2O	1,32500	1,32700	1,22500	1,32800	1,24800	1,32800
	EE	1,32400	1,32600	1,22200	1,32600	1,24400	1,32800
	vac	1,00700	1,01600	-	1,00400	-	1,01700
210-36H	H2O	1,00800	0,99700	-	1,01900	-	1,01800
	EE	1,00800	0,99800	-	1,00400	-	1,01900
	vac	1,35200	1,33300	1,35200	1,35100	1,36600	1,36100
11C-20O	H2O	1,35400	1,35100	1,35200	1,35700	1,35800	1,35500
	EE	1,35300	1,34800	1,35200	1,35200	1,36000	1,35700
	vac	0,96600	0,96800	0,96600	0,96600	0,96500	0,96500
20O-35H	H2O	0,96800	0,96800	0,96800	0,96700	0,96700	0,96700
	EE	0,96700	0,96800	0,96700	0,96700	0,96600	0,96700
	vac	1,35200	1,31900	1,36400	1,22600	1,36600	1,23500
17C-23O	H2O	1,35400	1,30600	1,35200	1,25200	1,35800	1,25900
	EE	1,35400	1,30800	1,35200	1,23300	1,36000	1,25200
	vac	0,96600	0,97100	0,96600	-	0,96500	-
230-37H	H2O	0,96700	0,97400	0,96800	-	0,96700	-
	EE	0,96700	0,97300	0,96700	-	0,96660	-
	vac	1,57840	1,54621	-	1,59270	1,59270	1,53845
22O36H	H2O	1,57259	1,63587	-	1,52688	1,52688	1,52764
	EE	1,57431	1,63318	-	1,59540	1,59540	1,52688
	vac	1,36500	1,35300	1,36400	1,36400	1,37400	1,37100
12C-24O	H2O	1,35900	1,35700	1,35800	1,36200	1,36100	1,36000
	EE	1,36000	1,35800	1,36000	1,36000	1,36400	1,36200
024-39C	vac	1,41400	1,42000	1,41500	1,41500	1,41100	1,41200

	H2O	1,42100	1,42100	1,42100	1,41900	1,42000	1,42100
	EE	1,41900	1,42000	1,42000	1,42000	1,41800	1,41900
	vac	1,36500	1,34400	1,36400	1,32900	1,37400	1,36500
18C-43O	H2O	1,35900	1,32600	1,35800	1,36500	1,36100	1,36600
	EE	1,36000	1,33000	1,36000	1,32800	1,36400	1,36500
	vac	1,41400	1,42600	1,41500	1,41600	1,41100	1,40000
430-43C	H2O	1,42100	1,43300	1,42100	1,40900	1,42000	1,41200
	EE	1,41900	1,43200	1,42000	1,42300	1,41800	1,40900
		D 00					

Tabela A 3 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos pelo método de M06-2X/6-311++(2d,p) para DMC. (em Å)											
•		NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO				
		0/1	1/2	0/2	0/2	-1/1	-1/1				
	vac	1,46000	1,42600	1,45900	1,45800	1,46700	1,46500				
8C-1C	H2O	1,46000	1,43800	1,45800	1,45800	1,46700	1,46200				
	EE	1,45900	1,43400	1,45800	1,47570	1,46700	1,46300				
	vac	1,33900	1,36200	1,33700	1,33900	1,33200	1,33400				
1C=2C	H2O	1,47000	1,34700	1,34000	1,34100	1,33500	1,33800				
	EE	1,33900	1,35000	1,33900	1,34000	1,33400	1,33700				
	vac	1,47000	1,44900	1,48600	1,47100	1,51400	1,48300				
2C-3C	H2O	1,47000	1,48720	1,47700	1,46700	1,50100	1,47400				
	EE	1,47300	1,48200	1,48000	1,46800	1,50500	1,47600				
	vac	1,43500	1,44100	1,46800	1,44600	1,42100	1,40200				
3C-4C	H2O	1,43500	1,42100	1,46800	1,44500	1,41900	1,41700				
	EE	1,43700	1,41800	1,46800	1,44500	1,41900	1,41300				
	vac	1,37300	1,40800	1,46800	1,36900	1,42100	1,41000				
4C=5C	H2O	1,37300	1,38400	1,46700	1,36900	1,41900	1,39100				
	EE	1,37200	1,38800	1,46800	1,36900	1,42000	1,39700				
	vac	1,45200	1,42400	1,48700	1,45000	1,51400	1,41000				
5C-6C	H2O	1,45200	1,44500	1,47700	1,44800	1,50100	1,43000				
	EE	1,45400	1,44300	1,48000	1,44900	1,50400	1,42400				
	vac	1,34100	1,36600	1,33700	1,35300	1,33500	1,37800				
6C=7C	H2O	1,34100	1,34400	1,34000	1,35400	1,37800	1,36100				
	EE	1,34000	1,34500	1,33900	1,35400	1,33400	1,36500				
	vac	1,45900	1,42500	1,45900	1,43200	1,46600	1,40400				
7C-14C	H2O	1,45900	1,44000	1,45600	1,43100	1,40400	1,42700				
	EE	1,45900	1,45200	1,45700	1,43200	1,42700	1,42000				
	vac	1,25400	1,25100	1,21700	1,24400	1,23400	1,26700				
3C=22O	H2O	1,25400	1,25200	1,22400	1,22900	1,24700	1,26500				
	EE	1,25100	1,25200	1,22200	1,24800	1,24300	1,26600				
	vac	1,32400	1,30300	1,21700	1,32200	1,23300	1,32600				
5C-21O	H2O	1,32400	1,31700	1,22500	1,32700	1,24800	1,32700				
	EE	1,32200	1,31400	1,22200	1,32600	1,24400	1,32600				
210-36H	vac	1,01900	1,03300	-	1,00400	-	1,01800				

	H2O	1,01000	1,00800	-	1,00300	-	1,01900
	EE	1,00800	1,01000	-	1,00300	-	1,02000
	vac	1,35400	1,32400	1,35100	1,35100	1,36900	1,36100
11C-20O	H2O	1,35400	1,30300	1,35200	1,35300	1,35800	1,35500
	EE	1,35300	1,30500	1,35200	1,35200	1,36000	1,35700
	vac	0,96700	0,97000	0,96600	0,96600	0,96500	0,96500
20O-35H	H2O	0,96700	0,97400	0,96800	0,96800	0,96700	0,96700
	EE	0,96700	0,97400	0,96700	0,96700	0,96700	0,96700
	vac	1,35400	1,33400	1,35800	1,23200	1,37200	1,24000
17C-23O	H2O	1,35700	1,35100	1,35500	1,23900	1,36100	1,26200
	EE	1,35800	1,35200	1,35600	1,23700	1,36300	1,25600
	vac	0,96400	0,96500	0,96200	-	0,96100	-
230-37H	H2O	0,96400	0,96400	0,96500	,	0,96400	-
	EE	0,96400	0,96400	0,96400	-	0,96300	-
	vac	1,56020	1,48520	-	1,59191	-	1,53170
22O36H	H2O	1,56020	1,57213	-	1,59766	-	1,52016
	EE	1,56685	1,56671	-	1,59415	-	1,51640
	vac	1,35900	1,34600	1,36400	1,36400	1,37400	1,37100
12C-24O	H2O	1,35900	1,31800	1,35800	1,35800	1,36100	1,36000
	EE	1,36200	1,32200	1,36000	1,36000	1,36400	1,36200
	vac	1,42100	1,42400	1,41500	1,41500	1,41100	1,41200
024-39C	H2O	1,42100	1,43600	1,42100	1,42100	1,42000	1,42100
	EE	1,41800	1,43500	1,42000	1,42000	1,41800	1,41900

Tabela A 4 pelo méto	Tabela A 4 - Valores dos parâmetros geométricos do comprimentos de ligação obtidos pelo método de M06-2X/6-311++(2d,p) para BDMC. (em Å)											
		NEUTRA CR ENOL RADICAL FENOL RADICAL ENOLATO FENOLATO										
		0/1	1/2	0/2	0/2	-1/1	-1/1					
	vac	1,46000	1,43300	1,46000	1,45800	1,46700	1,46500					
8C-1C	H2O	1,45900	1,44700	1,45600	1,45700	1,46600	1,46200					
	EE	1,45900	1,45100	1,45800	1,46300	1,46600	1,46300					
	vac 1,33700 1,35800 1,33700 1,33800 1,33200 1,33400											
1C=2C	H2O	1,33900	1,34700	1,34100	1,34100	1,33500	1,33800					
	EE	1,33900	1,34500	1,33900	1,33700	1,33500	1,33700					
	vac	1,47500	1,44400	1,47100	1,47200	1,51400	1,48300					
2C-3C	H2O	1,47000	1,45500	1,47600	1,46800	1,50100	1,47400					
	EE	1,47200	1,45800	1,46800	1,47600	1,50100	1,47600					
	vac	1,43900	1,46200	1,39900	1,44600	1,42100	1,40300					
3C-4C	H2O	1,43600	1,46400	1,46600	1,44500	1,41900	1,41800					
	EE	1,43600	1,46200	1,39900	1,41300	1,41900	1,41300					
	vac	1,37100	1,40600	1,39900	1,36900	1,42100	1,40900					
4C=5C	H2O	1,37200	1,38400	1,46600	1,36800	1,41900	1,39000					
	EE	1,37200	1,37800	1,39900	1,39500	1,41900	1,43000					
5C-6C	vac	1,45400	1,41700	1,47100	1,44900	1,51400	1,41000					

	H2O	1,45100	1,42200	1,47600	1,44800	1,50100	1,43000
	EE	1,45200	1,42700	1,46800	1,42400	1,50100	1,39500
	vac	1,33800	1,37500	1,33700	1,35300	1,33200	1,37800
6C=7C	H2O	1,34100	1,37800	1,34100	1,35400	1,33500	1,36100
	EE	1,34000	1,37700	1,33900	1,36500	1,35500	1,36500
	vac	1,46000	1,41500	1,46000	1,43300	1,46700	1,40500
7C-14C	H2O	1,45900	1,40800	1,45600	1,43100	1,46600	1,42800
	EE	1,46000	1,40800	1,45800	1,42100	1,46600	1,41210
	vac	1,24600	1,24400	1,26200	1,24300	1,23300	1,26600
3C=22O	H2O	1,25300	1,24100	1,21400	1,24800	1,24800	1,26400
	EE	1,25100	1,24200	1,26700	1,26500	1,24800	1,26500
	vac	1,32000	1,30600	1,26200	1,32200	1,23300	1,32600
5C-21O	H2O	1,32500	1,32200	1,21400	1,32700	1,24800	1,32700
	EE	1,32400	1,32600	1,26700	1,32600	1,24800	1,32600
	vac	1,00600	1,02100	-	1,00200	-	1,01600
210-36H	H2O	1,00700	0,99700	-	1,00100	-	1,01638
210 0011	EE	1,00700	0,99400	-	1,01800	-	1,01800
	vac	1,35800	1,33900	1,35800	1,35700	1,37200	1,36700
11C-20O	H2O	1,35600	1,35000	1,35500	1,35500	1,36100	1,35800
	EE	1,35700	1,35200	1,35700	1,36000	1,36100	1,36000
	vac	0,96200	0,96400	0,96200	0,96200	0,96100	0,96100
20O-35H	H2O	0,96400	0,96400	0,96500	0,96400	0,96400	0,96400
	EE	0,96400	0,96500	0,96400	0,96400	0,96400	0,96400
	vac	1,35800	1,32700	1,35800	1,23200	1,37200	1,24000
17C-23O	H2O	1,35700	1,31900	1,35500	1,24000	1,36100	1,26300
	EE	1,35700	1,31700	1,35700	1,25600	1,36100	1,25600
	vac	0,96200	0,96500	0,96200	-	0,96100	-
230-37H	H2O	0,98400	0,96800	0,96500	-	0,96400	-
	EE	0,98400	0,96800	0,96400	-	0,96400	-
	vac	1,58405	1,52924	-	1,60626	-	1,54428
22O36H	H2O	1,57781	1,64283	-	1,61057	-	1,53432
	EE	1,57723	1,65531	-	1,01800	-	1,53023

Tabela A 5 - Comparativo do Ângulo de Ligação (em grau º) metodologia com experimental.											
		CUR		DMC			BDMC				
	Teo.	Exp.	Dif. (%)	Teo.	Exp.	Dif. (%)	Teo.	Exp.	Dif. (%)		
8C-1C-2C	127,4495	128,3	-0,66%	127,6416	128,3	-0,51%	127,3015	128,3	-0,78%		
1C-2C-3C	120,6749	121,5	-0,68%	120,4430	121,5	-0,87%	120,8149	121,5	-0,56%		
2C-3C-4C	117,6682	121,7	-3,31%	117,8600	121,7	-3,16%	117,5928	121,7	-3,37%		
3C-4C-5C	120,2673	120,6	-0,28%	120,1102	120,6	-0,41%	120,2814	120,6	-0,26%		
4C-5C-6C	121,8801	124,8	-2,34%	122,0457	124,8	-2,21%	121,8059	124,8	-2,40%		
5C-6C-7C	122,1956	124,1	-1,53%	121,9357	124,1	-1,74%	122,3253	124,1	-1,43%		
6C-7C-14C	126,9452	124,3	2,13%	127,1563	124,3	2,30%	126,8174	124,3	2,03%		

4C-3C-22O	121,4524	119,9	1,29%	121,3801	119,9	1,23%	121,5022	119,9	1,34%
4C-5C-210	121,3884	120,3	0,90%	121,3324	120,3	0,86%	121,4711	120,3	0,97%
5C-210-36H	105,4533	-		105,3916	-		105,5292	-	-
12C-11C-20O	120,2665	120,9	-0,52%	120,2663	120,9	-0,52%	122,7374	120,9	1,52%
11C-20O-35H	108,2189	112,7	-3,98%	108,1960	112,7	-4,00%	109,8350	112,7	-2,54%
18C-17C-23O	120,2889	121,2	-0,75%	122,7744	121,2	1,30%	122,7608	121,2	1,29%
17C-23O-37H	108,2264	111,2	-2,67%	109,8835	111,2	-1,18%	109,8382	111,2	-1,22%
11C-12C-24O	114,1328	113,7	0,38%	114,1549	113,7	0,40%	-	-	-
12C-24O-39C	117,2271	116,7	0,45%	117,2304	116,7	0,45%	-	-	-
17C-18C-43O	114,1347	115,2	-0,92%	-	-	-	-	-	-
18C-42O-43C	117,2521	117,5	-0,21%	-	-	-	-	-	-

Legenda Teo.: Estudo Téorico utilizando Metodologia DFT M06-2X/6-311++(2d,p) Exp. Experimental por difração de raio-X (TONNESEN, HANNE HJORTH; KARLSEN, JAN; MOSTAD, 1982; PARIMITA et al., 2007) Dif.(%): Diferença em porcentagem entre o Teo. e Exp. Fonte: Danilo Melle de Proença, 2023

Tabela A 6 - Resultados M06-2X/6-311(2d,p) - parâmetros geométricos selecionados ângulos CUR (em graus [°])											
		NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO				
Carga / Multiplicidade		0/1	1/2	0/2	0/2	-1/1	-1/1				
	vac	127,4495	127,6248	127,9447	127,5128	127,5172	127,2270				
8C-1C-2C	H2O	127,2044	127,3002	127,3957	127,1545	127,2861	127,1232				
	EE	127,2803	127,4194	127,8326	127,3209	127,4199	127,1545				
	vac	120,6749	119,9518	119,7188	120,5469	120,8851	121,2541				
1C-2C-3C	H2O	121,1052	120,6324	120,4353	121,5493	121,8095	121,5219				
	EE	121,0120	120,4547	119,9860	120,8598	121,6007	121,5493				
	vac	117,6682	116,9687	115,2224	117,6644	113,4520	117,3634				
2C-3C-4C	H2O	117,4990	117,1920	115,0040	117,3578	114,0254	117,6279				
	EE	117,5321	117,2019	115,3914	117,4672	113,8749	117,5783				
	vac	120,2673	119,9557	125,9748	120,3325	126,8667	120,7429				
3C-4C-5C	H2O	120,5353	120,7699	125,4823	120,7087	127,5878	120,6565				
	EE	120,4980	120,7795	124,8198	120,5700	127,4562	120,7087				
	vac	121,8801	120,0885	115,2224	121,5923	113,4526	122,6406				
4C-5C-6C	H2O	121,8817	120,3549	115,0037	122,4718	114,0255	122,4361				
	EE	121,8849	120,1702	115,3899	121,5018	113,8763	122,4718				
	vac	122,1956	121,1882	119,7198	122,0819	120,8852	122,4301				
5C-6C-7C	H2O	122,3106	121,8854	120,4357	122,5037	121,8093	122,3877				
	EE	122,2993	121,6646	119,9863	122,1425	121,5953	122,5037				
	vac	126,9452	126,7617	127,9447	126,5903	127,5171	128,7604				
6C-7C-14C	H2O	126,7342	125,4644	127,3952	128,2688	127,2860	128,1150				
	EE	126,7978	125,7724	127,8327	126,2660	127,4254	128,2688				
4C-3C-22O	vac	121,4524	119,5553	122,4654	121,1028	128,2872	123,4645				

	H2O	121,3378	120,2987	122,0775	122,3540	127,0389	122,0125
	EE	121,3558	119,9200	121,8102	121,0249	127,3207	122,3540
	vac	121,3884	121,1125	122,4654	121,7966	128,2878	118,1128
4C-5C-210	H2O	121,0689	122,6796	122,0774	118,8796	127,0389	119,2569
	EE	121,1283	122,6792	121,8112	121,7022	127,3208	118,8796
	vac	105,4533	105,7862	-	105,5375	-	105,3759
5C-210-36H	H2O	105,1907	105,7279	-	104,9758	-	104,9036
	EE	105,2490	105,7891	-	105,3750	-	104,9758
	vac	120,2665	120,0758	120,2657	120,2550	120,3161	120,2980
12C-11C-20O	H2O	120,0818	120,0374	120,0664	120,1632	120,2016	120,1189
	EE	120,1219	120,0649	120,1056	120,1094	120,1947	120,1633
	vac	108,2189	109,2570	108,2271	108,2949	107,2416	107,5886
11C-20O-35H	H2O	108,5276	108,6165	108,5702	108,2819	108,3688	108,4653
	EE	108,4468	108,6685	108,4846	108,4859	108,0737	108,2819
	vac	120,2889	119,8957	120,2657	121,4083	120,3157	122,2026
18C-17C-23O	H2O	120,0966	119,7009	120,0664	122,0287	120,2014	121,9005
	EE	120,1386	119,7215	120,1056	121,2238	120,1943	122,0288
	vac	108,2264	109,9017	108,2271	-	107,2419	-
17C-23O-37H	H2O	108,5213	110,5378	108,5701	-	108,3688	-
	EE	108,4449	110,4417	108,4846	-	108,0730	-
	vac	114,1328	113,6883	114,1177	114,1167	114,2326	114,2184
11C-12C-24O	H2O	114,2365	114,1856	114,1932	114,2461	114,2559	114,2486
	EE	114,2134	114,1197	114,1655	114,1980	114,2563	114,2460
	vac	117,2271	117,5700	117,2979	117,2539	116,8809	116,9868
12C-24O-39C	H2O	117,3666	117,3795	117,4068	117,2986	117,4053	117,3709
	EE	117,3360	117,3970	117,4055	117,3467	117,2855	117,2985
	vac	114,1347	113,2422	114,1177	113,8034	114,2320	113,3917
17C-18C-43O	H2O	114,2420	113,9992	114,1932	113,7826	114,2557	113,9526
	EE	114,2165	113,0088	114,1655	113,9325	114,2565	113,7826
	vac	117,2521	117,8090	117,2979	118,0046	116,8821	116,5936
18C-42O-43C	H2O	117,3745	118,2758	117,4068	116,8636	117,4057	116,9179
	EE	117,3498	118,1442	117,4057	117,9979	117,2849	116,8636

Tabela A 7 - Resultados M06-2X/6-311(2d,p) - parâmetros geométricos selecionados ângulos DMC (em graus°)									
		NEUTRA CR RADICAL RADICA				ENOLATO	FENOLATO		
Carga / Multiplicidade		0/1	1/2	0/2	0/2	-1/1	-1/1		
	vac	127,6416	127,4563	127,7931	127,6903	127,6208	127,4249		
8C-1C-2C	H2O	127,3943	125,7651	127,3890	127,4249	127,5876	127,3555		
	EE	127,4724	125,8822	127,6262	127,5451	127,7867	127,3872		
1C-2C-3C	vac	120,4430	119,6528	119,8947	120,3178	120,7903	121,0035		

	H2O	120,8755	120,4511	120,3976	120,6756	121,4063	121,1940
	EE	120,7202	120,2422	120,1606	120,5386	121,0446	121,2030
	vac	117,8600	116,8795	115,1020	117,7900	113,5083	117,5457
2C-3C-4C	H2O	117,6883	117,1185	115,0199	117,5243	114,2861	117,8334
	EE	117,5890	117,0330	114,9266	117,6250	114,2441	117,8456
	vac	120,1102	119,2779	126,0990	120,2674	126,7437	120,6183
3C-4C-5C	H2O	120,3884	119,9126	125,3244	120,5562	127,5114	120,5195
	EE	120,3158	119,7400	126,3329	120,4686	127,3997	120,5205
	vac	122,0457	120,6659	115,1544	121,5479	113,5489	122,7602
4C-5C-6C	H2O	121,9950	121,8007	115,1840	121,3399	114,0061	122,5660
	EE	121,9884	121,7608	114,7290	121,4297	113,7777	122,6457
	vac	121,9357	120,8138	119,8958	121,9769	120,8549	122,2085
5C-6C-7C	H2O	122,2000	122,0075	120,2704	122,1521	121,8070	122,1404
	EE	122,1014	121,9107	120,3575	122,1118	121,7413	122,1027
	vac	127,1563	127,2417	127,7870	126,5315	127,5432	128,9054
6C-7C-14C	H2O	126,8683	126,8011	127,5939	125,9919	127,3702	128,3026
	EE	127,0168	126,8943	127,5060	126,1373	127,3526	128,5641
	vac	121,3801	120,6289	122,5173	120,9257	128,2713	123,3847
4C-3C-22O	H2O	121,2774	122,9633	122,0546	120,8574	126,9862	121,9111
	EE	121,3905	123,2335	122,4728	120,8413	127,2456	122,2210
	vac	121,3324	119,7276	122,5406	121,9101	128,2150	118,1379
4C-5C-210	H2O	120,9802	120,5449	121,9451	121,8282	127,0824	119,3008
	EE	121,1061	120,3328	122,5916	121,8327	127,2990	118,9411
	vac	105,3916	105,9085	-	105,5605	-	105,3986
5C-210-36H	H2O	105,0876	105,9584	-	105,3520	-	104,8790
	EE	105,1620	106,2099	-	105,3854	-	104,9466
	vac	120,2663	119,9603	120,2566	120,2544	120,3202	120,3016
12C-11C-20O	H2O	120,0858	119,7709	120,0593	120,0705	120,1970	120,1179
	EE	120,1537	119,7842	120,1079	120,1069	120,1861	120,1517
	vac	108,1960	109,6954	108,2230	108,2962	107,2405	107,5900
11C-20O-35H	H2O	108,5042	110,9033	108,5792	108,5472	108,3632	108,4459
	EE	108,5438	110,8493	108,4895	108,4816	108,0825	108,2635
	vac	122,7744	122,8031	122,7561	121,8508	122,5490	122,8223
18C-17C-23O	H2O	122,6272	122,6010	122,6260	121,6637	122,7851	122,6324
	EE	122,6576	122,6740	122,6869	121,7052	122,7198	122,6439
	vac	109,8835	111,5137	109,8892	-	108,7226	-
17C-23O-37H	H2O	110,1316	110,2291	110,2881	-	110,0899	-
	EE	110,1454	110,3664	110,1514	-	109,8027	-
	vac	114,1549	113,3947	114,1045	114,1302	114,2621	114,2559
18C-17C-23O	H2O	114,2337	112,9939	114,1806	114,2097	114,2861	114,2590
	EE	114,1813	112,9375	114,1861	114,1937	114,2966	114,2749
17C-23O-37H	vac	117,2304	117,7719	117,2929	117,2649	116,8572	116,9686

H2O	117,3940	118,7439	117,4068	117,4011	117,3953	117,3842
EE	117,3683	118,5722	117,3731	117,3740	117,2667	117,2933

Tabela A 8 - ângulos BDMC	Resu cem c	ltados M06 araus°)	6-2X/6-311(2	d,p) - pará	àmetros ge	ométricos s	elecionados
		NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO
Carga / Multiplicidade		0/1	1/2	0/2	0/2	-1/1	-1/1
	vac	127,3015	127,5281	127,3794	127,3702	127,3991	127,1299
8C-1C-2C	H2O	127,1540	127,2342	127,6212	127,1844	127,4123	127,0849
	EE	127,2621	127,3541	127,3684	127,1299	127,4123	127,1299
	vac	120,8149	119,9881	121,3549	120,6605	121,0457	121,5841
1C-2C-3C	H2O	121,2374	120,6020	120,1835	121,0310	121,7720	121,5997
	EE	121,0714	120,4185	121,3802	121,5841	121,7720	121,5841
	vac	117,5928	117,0625	121,2427	117,5684	113,4190	117,5590
2C-3C-4C	H2O	117,4093	116,9214	115,0911	117,2898	114,0703	117,5441
	EE	117,5055	116,9223	121,2366	117,5659	114,0703	117,5659
	vac	120,2814	120,0291	111,3911	120,4203	126,9047	112,0674
3C-4C-5C	H2O	120,6032	121,1567	125,9990	120,7328	127,5689	120,6794
	EE	120,5172	121,1392	111,8410	120,6744	127,5690	120,6744
	vac	121,8059	119,0856	121,2432	121,3652	113,4183	122,4150
4C-5C-6C	H2O	121,8281	119,4963	115,0909	121,2008	114,0703	122,3748
	EE	121,8677	119,4043	121,2346	122,4150	114,0703	122,4150
	vac	122,3253	121,0836	121,3509	122,2515	121,0466	122,5326
5C-6C-7C	H2O	122,4410	121,8492	120,1837	122,2791	127,4123	122,4577
	EE	122,3585	121,5938	121,2346	122,5326	121,7719	122,5326
	vac	126,8174	126,8136	127,3757	126,3009	127,3986	128,1677
6C-7C-14C	H2O	126,6839	125,6075	127,6205	125,9114	127,4123	128,0165
	EE	126,7835	125,9888	127,3717	128,1677	127,4123	128,1677
	vac	121,5022	119,0285	119,1993	121,0418	127,3986	122,3011
4C-3C-22O	H2O	121,3696	119,8506	122,3030	120,9381	127,0267	121,9891
	EE	121,3773	119,4816	119,0651	122,3011	127,0267	122,3011
	vac	121,4711	120,4265	119,1975	122,0174	128,3174	119,0651
4C-5C-210	H2O	121,1024	122,4492	122,3031	121,9067	127,0267	119,4183
	EE	121,1623	122,1357	119,0678	119,0651	127,0267	119,0651
	vac	105,5292	106,0311	-	105,6893	-	105,0184
5C-210-36H	H2O	105,2155	120,1830	-	105,4507	-	104,9640
	EE	105,2801	106,2739	-	105,0158	-	105,0158
	vac	122,7374	122,8314	122,7581	122,7505	122,5680	122,5832
12C-11C-20O	H2O	122,7517	122,5472	122,6547	122,5635	122,7392	122,5943
	EE	122,5573	122,5632	122,6514	122,5832	122,7392	122,5832
11C-20O-35H	vac	109,8350	111,1904	109,9096	109,9584	108,7485	109,8601

	H2O	110,1139	110,3070	110,2953	110,1550	110,0543	110,0357
	EE	110,0256	104,0517	110,2154	109,8601	110,0543	109,8601
18C-17C-23O	vac	122,7608	122,7635	122,7560	121,8620	122,5678	122,7302
	H2O	122,5872	122,3735	122,6550	121,6782	122,7392	122,6634
	EE	122,5820	122,3490	122,6503	122,7302	122,7392	122,7302
	vac	109,8382	111,9153	109,9030	-	108,7486	-
17C-23O-37H	H2O	110,0957	111,9963	110,2945	-	110,0542	-
	EE	110,0203	111,8988	110,2163	-	110,0543	-

Tabela A 9 - Carga CHELPG atômicas (a.u.) calculadas para a estrutura CUR neutra e de suas form	as
radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).	

		NEUTRA	CR	ENOL-RAD	FENOL-RAD	ENOLATO	FENOLATO
		0/1	1/2	0/2	0/2	-1/1	-1/1
	vac	0,027	0,048	0,050	0,030	0,073	-0,007
C1	H2O	-0,022	-0,002	-0,085	-0,024	0,002	-0,040
	EE	-0,008	0,014	0,105	-0,001	0,039	-0,031
	vac	-0,106	-0,315	-0,090	-0,124	0,024	-0,720
C2	H2O	-0,143	-0,173	0,103	-0,140	-0,002	-0,129
	EE	-0,134	-0,176	0,096	-0,150	-0,012	-0,114
	vac	0,163	0,165	0,280	0,215	0,098	0,172
C3	H2O	0,193	0,194	-0,325	0,218	0,205	0,226
	EE	0,187	0,183	-0,353	0,232	-0,203	-0,216
	vac	-0,304	-0,094	-0,293	-0,326	-0,468	-0,392
C4	H2O	-0,310	-0,179	0,489	-0,313	-0,549	-0,395
	EE	-0,309	-0,145	.540	-0,320	-0,536	-0,398
	vac	0,420	0,389	0,280	0,402	0,098	0,462
C5	H2O	0,417	0,376	-0,325	0,442	0,205	0,447
	EE	0,420	0,376	-0,353	0,400	0,202	0,452
	vac	-0,135	-0,120	-0,090	-0,096	0,027	-0,213
C6	H2O	0,172	-0,076	0,102	-0,129	-0,020	-0,230
	EE	-0,164	-0,082	0,096	-0,111	-0,002	-0,229
	vac	-0,075	-0,034	0,050	-0,099	0,073	-0,067
C7	H2O	-0,105	-0,111	0,085	-0,119	0,002	-0,109
	EE	-0,096	-0,093	0,105	-0,128	0,041	-0,094
	vac	1,113	1,122	1,082	1,105	1,065	1,309
C8	H2O	1,022	1,031	0,977	1,020	0,924	1,001
	EE	1,048	1,057	1,015	1,041	0,968	1,025
	vac	-0,619	-0,635	-0,498	-0,607	-0,530	-0,602
C9	H2O	-0,630	-0,621	-0,558	-0,623	-0,526	-0,620
	EE	-0,627	-0,621	-0,573	-0,614	-0,526	-0,614
	vac	-0,227	-0,226	-0,279	-0,229	-0,238	-0,221
C10	H2O	-0,263	-0,271	-0,304	-0,257	-0,281	-0,255
	EE	-0,254	-0,260	-0,297	-0,256	-0,264	-0,247

	vac	-0,141	-0,118	-0,043	-0,132	-0,145	-0,150
C11	H2O	-0,118	-0,105	-0,048	-0,122	-0,088	-0,123
	EE	-0,124	-0,110	-0,065	-0,115	-0,115	-0,129
	vac	0,051	0,059	-0,006	0,056	0,052	0,062
C12	H2O	0,053	0,039	0,031	0,969	0,045	0,072
	EE	0,053	0,039	0,026	0,057	0,047	0,070
	vac	-0,373	-0,349	-0,424	-0,391	-0,394	-0,389
C13	H2O	-0,342	-0,345	-0,400	-0,354	-0,367	-0,357
	EE	-0,350	-0,351	-0,403	-0,370	-0,389	-0,365
	vac	1,124	1,146	1,082	1,100	1,065	0,997
C14	H2O	1,034	1,169	0,977	1,100	0,924	0,889
	EE	1,060	1,165	1,015	1,084	0,968	0,918
	vac	-0,591	-0,612	-0,498	-0,605	-0,530	-0,625
C15	H2O	-0,598	-0,591	-0,558	-0,674	-0,525	-0,630
	EE	-0,597	-0,597	-0,573	-0,613	-0,528	-0,628
	vac	-0,254	-0,239	-0,279	-0,134	-0,238	-0,186
C16	H2O	-0,292	-0,246	-0,558	-0,172	-0,281	-0,247
	EE	-0,283	-0,242	-0,297	-0,153	-0,263	-0,230
	vac	-0,103	-0,075	-0,043	-0,018	-0,145	-0,017
C17	H2O	-0,078	-0,041	-0,048	0,006	-0,088	0,076
	EE	-0,084	-0,051	0,065	0,016	-0,117	0,053
	vac	0,059	0,094	-0,006	0,094	0,052	0,098
C18	H2O	0,059	0,109	0,031	0,084	0,045	0,032
	EE	0,059	0,106	0,026	0,067	0,047	0,053
	vac	-0,394	-0,359	-0,424	-0,469	-0,394	-0,490
C19	H2O	-0,367	-0,333	-0,400	-0,394	-0,367	-0,443
	EE	-0,375	-0,341	-0,403	-0,425	-0,389	-0,459
	vac	-0,404	-0,358	-0,403	-0,401	-0,432	-0,423
020	H2O	-0,440	-0,434	-0,438	-0,441	-0,541	-0,444
	EE	-0,432	-0,420	-0,430	-0,430	-0,448	-0,439
	vac	-0,527	-0,510	-0,372	-0,522	-0,511	-0,560
021	H2O	-0,557	-0,523	-0,472	-0,568	-0,646	-0,588
	EE	-0,549	-0,517	-0,444	-0,541	-0,615	-0,582
	vac	-0,542	-0,514	-0,372	-0,532	-0,511	-0,627
022	H2O	-0,606	-0,557	-0,472	-0,611	-0,646	-0,656
	EE	-0,590	-0,537	-0,444	-0,576	-0,615	-0,653
	vac	-0,404	-0,321	-0,403	-0,411	-0,432	-0,573
023	H2O	-0,441	-0,307	-0,438	-0,543	-0,451	-0,743
	EE	-0,433	-0,308	-0,423	0,517	-0,448	-0,695
	vac	-0,400	-0,389	-0,401	-0,400	-0,413	-0,408
024	H2O	-0,407	-0,405	-0,406	-0,407	-0,412	-0,409
	EE	-0,406	-0,402	-0,405	-0,405	-0,414	-0,409
C39	vac	-0,346	-0,351	-0,348	-0,347	-0,344	-0,343

	H2O	-0,361	-0,362	-0,366	-0,361	-0,362	-0,359
	EE	-0,358	-0,360	-0,364	-0,359	-0,359	-0,356
	vac	-0,400	-0,382	-0,401	-0,244	-0,413	-0,290
O43	H2O	-0,407	-0,347	-0,406	-0,305	-0,412	-0,357
	EE	-0,406	-0,358	-0,405	-0,275	-0,414	-0,338
	vac	-0,347	-0,354	-0,348	-0,345	-0,344	-0,328
C44	H2O	-0,361	-0,377	-0,366	-0,355	-0,362	-0,332
	EE	-0,358	-0,372	-0,364	-0,353	-0,359	-0,333

Tabel radica	a A 10 · alares e	- Carga CHELPO protonadas, ut	G atômicas (a. ilizando metod	u.) calculadas dologia e M062	s para a estrutura 2X/6-311++G(2d,	a DMC neutra e o).	de suas formas
		NEUTRA	CR	ENOL-RAD	FENOL-RAD	ENOLATO	FENOLATO
		0/1	1/2	0/2	0/2	-1/1	-1/1
	vac	-0,028	0,043	0,008	0,016	0,001	-0,016
C1	H2O	-0,028	-0,058	0,060	-0,036	-0,058	-0,059
	EE	-0,013	-0,049	-0,024	-0,021	-0,038	-0,048
	vac	-0,185	-0,096	-0,044	-0,167	-0,120	-0,104
C2	H2O	-0,185	-0,053	0,159	-0,202	-0,069	-0,171
	EE	-0,177	-0,035	-0,074	-0,196	-0,061	-0,154
	vac	0,247	0,239	0,204	0,200	0,179	0,161
C3	H2O	0,247	0,193	-0,157	-0,228	0,261	0,236
	EE	0,240	0,169	0,252	0,225	-0,248	0,223
	vac	-0,358	-0,258	-0,260	-0,286	-0,445	-0,352
C4	H2O	-0,358	-0,358	0,398	-0,281	-0,509	-0,382
	EE	-0,356	-0,328	-0,245	-0,283	-0,495	-0,382
	vac	0,549	0,491	0,286	0,550	0,196	0,565
C5	H2O	-0,549	0,593	-0,239	0,525	0,266	0,567
	EE	0,552	0,595	0,307	0,527	0,251	0,569
	vac	0,231	-0,150	0,004	-0,143	0,046	-0,297
C6	H2O	-0,231	-0,244	-0,046	-0,159	-0,220	0,567
	EE	-0,223	-0,245	-0,024	-0,156	-0,002	-0,300
	vac	-0,212	-0,111	-0,026	-0,151	0,010	-0,091
C7	H2O	-0,212	-0,195	-0,078	-0,176	-0,037	-0,296
	EE	-0,206	-0,177	-0,032	-0,169	-0,024	-0,134
	vac	1,133	1,131	1,031	1,208	1,028	1,198
C8	H2O	1,133	1,292	0,965	1,119	0,918	1,113
	EE	1,159	1,260	0,969	1,146	0,956	1,138
	vac	0,660	-0,615	-0,545	-0,647	-0,509	-0,400
C9	H2O	-0,660	-0,670	-0,573	-0,654	-0,531	-0,663
	EE	-0,659	-0,664	-0,557	-0,655	-0,534	-0,660
	vac	-0,261	-0,227	-0,264	-0,236	-0,267	-0,229
C10	H2O	-0,261	-0,212	-0,301	-0,274	-0,291	-0,263
	EE	-0,252	-0,215	-0,288	-0,265	-0,289	-0,254

	vac	-0,105	-0,051	-0,082	-0,124	-0,096	-0,142
C11	H2O	-0,105	-0,053	-0,055	-0,099	-0,075	-0,115
	EE	-0,111	-0,057	-0,067	-0,106	-0,081	-0,123
	vac	0,085	0,088	0,032	-0,099	0,022	-0,101
C12	H2O	0,009	0,127	0,042	0,091	-0,038	0,104
	EE	0,087	0,131	0,035	0,093	0,029	0,105
	vac	-0,484	-0,447	-0,326	-0,498	-0,364	-0,501
C13	H2O	-0,484	-0,418	-0,352	-0,450	-0,323	-0,451
	EE	-0,495	-0,415	-0,303	-0,463	-0,329	-0,462
	vac	0,942	0,913	0,820	1,074	0,760	0,986
C14	H2O	0,942	0,946	0,768	1,039	0,698	0,862
	EE	0,963	0,961	0,761	1,047	0,709	0,399
	vac	-0,808	-0,605	-0,597	-0,866	-0,521	-0,944
C15	H2O	-0,808	-0,811	-0,612	-0,898	-0,540	-0,967
	EE	-0,810	-0,805	-0,591	-0,888	-0,525	-0,967
	vac	-0,106	-0,208	-0,165	-0,010	-0,153	0,011
C16	H2O	-0,106	-0,109	-0,214	-0,012	-0,172	-0,050
	EE	-0,099	-0,113	-0,176	-0,012	-0,168	-0,038
	vac	-0,389	-0,272	-0,263	-0,434	-0,306	-0,493
C17	H2O	-0,389	-0,381	-0,300	-0,343	-0,303	-0,310
	EE	-0,384	-0,363	-0,275	-0,369	-0,299	-0,357
	vac	-0,142	-0,113	-0,210	0,038	-0,206	0,013
C18	H2O	-0,142	-0,140	-0,177	-0,004	-0,218	-0,071
	EE	-0,139	-0,144	-0,216	0,013	-0,217	0,049
	vac	-0,063	-0,122	-0,135	-0,153	-0,192	-0,092
C19	H2O	-0,063	-0,059	-0,085	-0,173	-0,164	-0,131
	EE	-0,065	-0,057	-0,131	-0,167	-0,175	-0,120
	vac	-0,440	-0,334	-0,403	-0,400	-0,433	-0,422
O20	H2O	-0,440	-0,295	-0,438	-0,438	-0,452	-0,444
	EE	-0,432	-0,293	-0,430	-0,429	-0,449	-0,439
	vac	-0,568	-0,514	-0,369	-0,528	-0,511	-0,567
O21	H2O	-0,568	-0,542	-0,472	-0,552	-0,647	-0,596
	EE	-0,561	-0,530	-0,446	-0,547	-0,614	-0,592
	vac	-0,604	-0,540	-0,365	-0,523	-0,514	-0,619
022	H2O	-0,604	-0,584	-0,472	-0,580	-0,648	-0,650
	EE	-0,588	-0,574	-0,444	-0,566	-0,615	-0,646
	vac	-0,400	-0,308	-0,361	-0,400	-0,390	-0,554
O23	H2O	-0,400	-0,395	-0,398	-0,501	-0,412	-0,715
	EE	-0,391	-0,381	-0,390	-0,477	-0,408	-0,673
	vac	-0,411	-0,386	-0,399	-0,402	-0,411	-0,410
024	H2O	-0,411	-0,329	-0,405	-0,409	-0,410	-0,411
	EE	-0,409	-0,342	-0,404	-0,408	-0,412	-0,412
C30	vac	-0,369	-0,356	-0,344	-0,352	-0,340	-0,348
000	H2O	-0,369	-0,389	-0,364	-0,367	-0,357	-0,366

	EE	-0,366	-0,383	-0,356	-0,364	-0,354	-0,362	
Fonto	Danilo I	Melle de Proence	2023				•	

		NEUTRA	CR	ENOL-RAD	FENOL-RAD	ENOLATO	FENOLATO
		0/1	1/2	0/2	0/2	-1/1	-1/1
	vac	-0,051	-0,200	-0,148	-0,039	-0,092	-0,081
C1	H2O	-0,084	-0,057	-0,048	-0,069	-0,126	-0,098
	EE	-0,074	-0,045	-0,160	-0,095	-0,117	-0,095
	vac	-0,077	-0,145	-0,161	-0,091	0,008	-0,023
C2	H2O	-0,125	-0,164	-0,030	-0,137	-0,041	-0,110
	EE	-0,115	-0,167	-0,182	-0,090	-0,028	-0,090
	vac	0,215	0,213	-0,041	0,217	0,359	0,204
C3	H2O	0,248	0,207	0,247	0,243	0,421	0,261
	EE	0,244	0,199	-0,051	0,254	0,407	0,254
	vac	-0,402	-0,169	0,472	-0,368	-0,430	-0,444
C4	H2O	-0,410	-0,176	0,002	-0,360	-0,491	-0,458
	EE	-0,410	-0,146	-0,478	-0,460	-0,475	-0,460
	vac	0,528	0,475	-0,043	0,501	0,359	0,552
C5	H2O	0,522	0,445	0,246	0,493	0,421	0,542
	EE	0,525	0,446	-0,051	0,544	0,407	0,544
	vac	-0,113	-0,129	-0,166	-0,072	0,008	-0,231
C6	H2O	-0,161	-0,091	-0,031	-0,099	-0,041	-0,241
	EE	-0,151	-0,100	-0,182	0,240	-0,028	-0,240
	vac	-0,172	-0,089	-0,149	-0,138	-0,092	-0,088
C7	H2O	-0,196	-0,121	-0,049	-0,166	-0,126	-0,136
	EE	-0,189	-0,112	-0,160	-0,120	-0,116	-0,120
	vac	0,914	0,935	1,015	0,906	0,731	0,800
C8	H2O	0,842	0,844	0,653	0,833	0,653	0,828
	EE	0,865	0,865	0,966	0,846	0,664	0,846
	vac	-0,688	-0,726	-0,795	-0,679	-0,502	-0,655
C9	H2O	-0,687	-0,681	-0,509	-0,673	-0,512	-0,676
	EE	-0,693	-0,985	-0,802	-0,674	-0,503	-0,674
	vac	-0,125	-0,126	-0,150	-0,130	-0,159	-0,127
C10	H2O	-0,153	-0,160	-0,232	-0,160	-0,194	-0,154
	EE	-0,145	-0,154	-0,160	-0,147	-0,186	-0,147
	vac	-0,341	-0,295	-0,301	-0,332	-0,348	-0,353
C11	H2O	-0,354	-0,342	-0,294	-0,345	-0,338	-0,352
	EE	-0,349	-0,331	-0,317	-0,348	-0,331	-0,348
	vac	-0,152	-0,149	-0,178	-0,149	-0,163	-0,151
C12	H2O	-0,164	-0,159	-0,194	-0,159	-0,185	-0,163
Ē	EE	-0,162	-0,159	-0,183	-0,162	-0,186	-0,162
C13	vac	-0 165	-0 125	-0.061	-0.174	-0.229	-0 187

	H2O	-0,151	-0,148	-0,177	-0,161	-0,208	-0,161
	EE	-0,154	-0,144	-0,055	-0,167	-0,210	-0,167
	vac	0,964	0,978	1,016	1,002	0,731	0,925
C14	H2O	0,897	0,982	0,653	0,974	0,653	0,811
	EE	0,919	-0,975	0,966	0,843	0,664	0,843
	vac	-0,728	-0,747	-0,792	-0,816	-0,502	-0,873
C15	H2O	-0,731	-0,724	-0,509	-0,844	-0,512	-0,885
	EE	-0,735	-0,731	-0,802	-0,882	-0,503	-0,882
	vac	-0,122	-0,127	-0,153	-0,025	-0,159	-0,051
C16	H2O	-0,149	-0,132	-0,232	-0,037	-0,194	-0,099
	EE	-0,141	-0,130	-0,160	-0,086	-0,186	-0,086
	vac	-0,329	-0,257	-0,298	-0,382	-0,348	-0,436
C17	H2O	-0,343	-0,278	-0,293	-0,287	-0,338	-0,259
	EE	-0,338	-0,273	-0,317	-0,303	-0,331	-0,303
	vac	-0,146	-0,136	-0,178	-0,013	-0,163	-0,039
C18	H2O	-0,158	-0,126	-0,194	-0,047	-0,185	-0,112
	EE	-0,156	-0,129	-0,183	-0,093	-0,186	-0,093
	vac	-0,126	-0,088	-0,058	-0,124	-0,229	-0,068
C19	H2O	-0,109	-0,068	-0,176	-0,139	-0,208	-0,124
	EE	-0,113	-0,072	-0,055	-0,111	-0,210	-0,111
	vac	-0,362	-0,320	-0,301	-0,359	-0,388	-0,380
O20	H2O	-0,401	-0,391	-0,398	-0,399	-0,411	-0,405
	EE	-0,392	-0,376	-0,392	-0,399	-0,406	-0,399
	vac	-0,521	-0,497	-0,301	-0,514	-0,513	-0,556
O21	H2O	-0,553	-0,504	-0,469	-0,540	-0,649	-0,583
	EE	-0,546	-0,497	-0,348	-0,578	-0,618	-0,578
	vac	-0,536	-0,504	-0,362	-0,520	-0,513	-0,616
022	H2O	-0,604	-0,537	-0,469	-0,580	-0,649	-0,648
	EE	-0,588	-0,521	-0,348	-0,643	-0,618	-0,643
	vac	-0,362	-0,292	-0,362	-0,406	-0,388	-0,557
O23	H2O	-0,402	-0,295	-0,398	-0,503	-0,411	-0,719
	EE	-0,393	-0,295	-0,392	-0,677	-0,406	-0,678

Tab	Tabela A 12 - Variação de Carga - CUR									
			ET→	ET-PT	н	AT		ET-F	PT à ET	
		CR	ENOLRAD	FENOLRAD	ENOLRAD	FENOLRAD	ENOLATO	ENOL- RAD	FENOLATO	FENOLRAD
		-	-	-	-	-	-	-	-	-
		NEUTRA	NEUTRA	CR	NEUTRA	CUR	NEUTRA	ENOLATO	NEUTRA	FENOLATO
	vac	0,021	0,002	-0,018	-0,077	0,003	0,046	-0,023	-0,034	0,037
ប	H2O	0,020	-0,083	-0,022	0,107	-0,002	0,024	-0,087	-0,018	0,016
_	EE	0,022	0,091	-0,015	-0,097	0,007	0,047	0,066	-0,023	0,030
	vac	-0,209	0,225	0,191	0,196	-0,018	0,130	-0,114	-0,614	0,596
3	H2O	-0,030	0,276	0,033	0,040	0,003	0,141	0,105	0,014	-0,011
	EE	-0,042	0,272	0,026	0,038	-0,016	0,122	0,108	0,020	-0,036
0	vac	0,002	0,115	0,050	-0,443	0,052	-0,065	0,182	0,009	0,043
5.	H2O	0,001	-0,519	0,024	0,132	0,025	0,012	-0,530	0,033	-0,008

1	EE	-0,004	-0,536	0,049	0,166	0,045	-0,390	-0,150	-0,403	0,448
	vac	0,210	-0,199	-0,232	0,597	-0,022	-0,164	0,175	-0,088	0,066
5	H2O	0,131	0,668	-0,134	-0,179	-0,003	-0,239	1,038	-0,085	0,082
_	EE	0,164	0,685	-0,175	-0,231	-0,011	-0,227	1,076	-0,089	0,078
	vac	-0,031	-0,109	0,013	-0,700	-0,018	-0,322	0,182	0,042	-0,060
C5	H2O	-0,041	-0,701	0,066	-0,092	0,025	-0,212	-0,530	0,030	-0,005
	EE	-0,044	-0,729	0,024	-0,067	-0,020	-0,218	-0,555	0,032	-0,052
	vac	0,015	0,030	0,024	0,225	0,039	0,162	-0,117	-0,078	0,117
ဗိ	H2O	-0,248	0,178	-0,053	-0,274	-0,301	-0,192	0,122	-0,402	0,101
	EE	0,082	0,178	-0,029	0,068	0,053	0,162	0,098	-0,065	0,118
Ι.	vac	0,041	0,084	-0,065	0,025	-0,024	0,148	-0,023	0,008	-0,032
5	H2O	-0,006	0,196	-0,008	0,020	-0,014	0,107	0,083	-0,004	-0,010
	EE	0,003	0,198	-0,035	-0,009	-0,032	0,137	0,064	0,002	-0,034
	vac	0,009	-0,040	-0,017	-2,195	-0,008	-0,048	0,017	0,197	-0,204
ပိ	H2O	0,009	-0,054	-0,011	-1,999	-0,002	-0,098	0,053	-0,021	0,019
	EE	0,009	-0,042	-0,016	-2,063	-0,007	-0,080	0,047	-0,023	0,016
	vac	-0,016	0,137	0,028	1,117	0,012	0,089	0,032	0,017	-0,005
ő	H2O	0,009	0,063	-0,002	1,188	0,007	0,104	-0,032	0,010	-0,003
	EE	0,006	0,048	0,007	1,200	0,013	0,101	-0,047	0,013	0,000
0	vac	0,001	-0,053	-0,003	0,506	-0,002	-0,011	-0,041	0,006	-0,008
υ	H2O	-0,008	-0,033	0,014	0,567	0,006	-0,018	-0,023	0,008	-0,002
	EE	-0,006	-0,037	0,004	0,551	-0,002	-0,010	-0,033	0,007	-0,009
-	vac	0,023	0,075	-0,014	0,184	0,009	-0,004	0,102	-0,009	0,018
ပ်	H2U	0,013	0,057	-0,017	0,166	-0,004	0,030	0,040	-0,005	0,001
		0,014	0,045	-0,005	0,169	0,009	0,009	0,050	-0,005	0,014
12		0,000	-0,005	-0,003	-0,043	0,003	0,001	-0,038	0,011	-0,000
Ö	FF	-0,014	-0,008	0,930	-0,034	0,910	-0,008	-0,014	0,013	-0.013
		0.024	-0.075	-0.042	0 797	-0.018	-0,000	-0.021	-0.016	-0,013
13	H20	-0.003	-0.055	-0.009	0 742	-0.012	-0.025	-0.033	-0.015	0.003
ပ	FF	-0.001	-0.052	-0.019	0.753	-0.020	-0.039	-0.014	-0.015	-0.005
	vac	0.022	-0.064	-0.046	-2.206	-0.024	-0.059	0.017	-0.127	0.103
14	H2O	0,135	-0,192	-0,069	-2,011	0,066	-0,110	0,053	-0,145	0,211
0	EE	0,105	-0,150	-0,081	-2,075	0,024	-0,092	0,047	-0,142	0,166
	vac	-0,021	0,114	0,007	1,089	-0,014	0,061	0,032	-0,034	0,020
33	H2O	0,007	0,033	-0,083	1,156	-0,076	0,073	-0,033	-0,032	-0,044
0	EE	0,000	0,024	-0,016	1,170	-0,016	0,069	-0,045	-0,031	0,015
6	vac	0,015	-0,040	0,105	0,533	0,120	0,016	-0,041	0,068	0,052
5	H2O	0,046	-0,312	0,074	0,850	0,120	0,011	-0,277	0,045	0,075
_	EE	0,041	-0,055	0,089	0,580	0,130	0,020	-0,034	0,053	0,077
~	vac	0,028	0,032	0,057	0,146	0,085	-0,042	0,102	0,086	-0,001
S	H2O	0,037	-0,007	0,047	0,126	0,084	-0,010	0,040	0,154	-0,070
	EE	0,033	0,116	0,067	0,019	0,100	-0,033	0,182	0,137	-0,037
ω	vac	0,035	-0,100	0,000	-0,053	0,035	-0,007	-0,058	0,039	-0,004
δ	H2U	0,050	-0,078	-0,025	-0,090	0,025	-0,014	-0,014	-0,027	0,052
	EE	0,047	-0,080	-0,039	-0,085	0,008	-0,012	-0,021	-0,006	0,014
61		0,035	-0,065	-0,110	0,010	-0,075	0,000	-0,030	-0,090	0,021
Ù	FE	0,034	-0,007	-0,001	0,707	-0,027	-0.014	-0,033	-0,070	0,049
	Vac	0,034	-0,002	-0,004	0,770	0,003	-0,014	0.029	-0,004	0,034
20	H20	0,040	-0.004	-0.007	0.878	-0.001	-0.101	0,023	-0.004	0,022
0	FF	0.012	-0.010	-0.010	0.862	0.002	-0.016	0.018	-0.007	0.009
	vac	0,017	0,138	-0,012	0,899	0,005	0,016	0,139	-0,033	0,038
21	H2O	0,034	0,051	-0,045	1,029	-0,011	-0,089	0,174	-0,031	0,020
0	EE	0,032	0,073	-0,024	0,993	0,008	-0,066	0,171	-0,033	0,041
<u> </u>	vac	0,028	0,142	-0,018	0,914	0,010	0,031	0,139	-0,085	0,095
222	H2O	0,049	0,085	-0,054	1,078	-0,005	-0,040	0,174	-0,050	0,045
	EE	0,053	0,093	-0,039	1,034	0,014	-0,025	0,171	-0,063	0,077
~	vac	0,083	-0,082	-0,090	0,807	-0,007	-0,028	0,029	-0,169	0,162
3	H2O	0,134	-0,131	-0,236	0,879	-0,102	-0,010	0,013	-0,302	0,200
Ľ	EE	0,125	-0,115	0,825	0,856	0,950	-0,015	0,025	-0,262	1,212

-	vac	0,011	-0,012	-0,011	0,801	0,000	-0,013	0,012	-0,008	0,008
5	H2O	0,002	-0,001	-0,002	0,813	0,000	-0,005	0,006	-0,002	0,002
Ŭ	EE	0,004	-0,003	-0,003	0,811	0,001	-0,008	0,009	-0,003	0,004
•	vac	-0,005	0,003	0,004	0,694	-0,001	0,002	-0,004	0,003	-0,004
1	H2O	-0,001	-0,004	0,001	0,727	0,000	-0,001	-0,004	0,002	-0,002
Ŭ	EE	-0,002	-0,004	0,001	0,722	-0,001	-0,001	-0,005	0,002	-0,003
~	vac	0,018	-0,019	0,138	0,801	0,156	-0,013	0,012	0,110	0,046
4	H2O	0,060	-0,059	0,042	0,813	0,102	-0,005	0,006	0,050	0,052
Ŭ	EE	0,048	-0,047	0,083	0,811	0,131	-0,008	0,009	0,068	0,063
4	vac	-0,007	0,006	0,009	0,695	0,002	0,003	-0,004	0,019	-0,017
4	H2O	-0,016	0,011	0,022	0,727	0,006	-0,001	-0,004	0,029	-0,023
•	EE	-0,014	0,008	0,019	0,722	0,005	-0,001	-0,005	0,025	-0,020
g	vac	0,402	0,135	-0,098	6,931	0,304	-0,121	0,658	-0,796	1,101
car	H2O	0,410	-0,690	0,415	8,076	0,825	-0,676	0,396	-0,825	1,650
Σ	EE	0,707	-0,104	0,622	7,617	1,329	-0,594	1,197	-0,878	2,207

Tab	abela A 13 - Variação de Carga - DMC									
			ET→	ET-PT	Н	AT		ET-F	PT à ET	
		CR					ΕΝΟΙ ΑΤΟ	ENOL-	FENOLATO	
		UN	EntoEntre	LITOLIA	ENGLINE	LITOLIA	LITOLATO	RAD		
				-		-				
			NEUIRA		NEUTRA		NEUTRA	ENOLATO	NEUTRA	FENOLATO
~	vac	0,071	-0,035	-0,027	0,020	0,044	0,029	0,007	0,012	0,032
U U		-0,030	0,118	0,022	-0,032	-0,008	-0,030	0,118	-0,031	0,023
		-0,036	0,025	0,028	0,037	-0,008	-0,025	0,014	-0,035	0,027
2		0,009	0,052	-0,071	0,229	0,018	0,005	0,070	0,001	-0,003
U U		0,132	0,212	-0,149	0,026	-0,017	0,116	0,228	0,014	-0,031
		0,142	-0,039	-0,101	0,251	-0,019	0,110	-0,013	0,023	-0,042
n		-0,008	-0,035	-0,039	-0,451	-0,047	-0,008	0,025	-0,080	0,039
U U		-0,034	-0,330	-0,421	-0,090	-0,475	0,014	-0,410	-0,011	-0,404
		-0,071	0,003	0,030	-0,492	-0,015	-0,400	0,500	-0,017	0,002
4		0,100	-0,002	-0,028	-0.040	0,072	-0,007	0,185	-0.024	0,000
0	FE	0,000	0,730	0,077	-0,040	0,077	-0,130	0,907	-0,024	0,101
		-0.058	-0.205	0,040	-0.835	0,073	-0,139	0,230	-0,020	-0.015
ŝ	H20	1 142	-0.832	-0.068	0,000	1 074	0,000	-0.505	1 116	-0.042
	FF	0.043	-0.288	-0.068	-0.859	-0.025	-0.301	0.056	0.017	-0.042
	vac	-0.381	0 154	0.007	-0.235	-0.374	-0.185	-0.042	-0.528	0.154
ဖ	H2O	-0.013	0 198	0.085	0.277	0.072	0.011	0 174	0 798	-0 726
	FE	-0.022	0.221	0.089	0.247	0.067	0.221	-0.022	-0.077	0.144
	vac	0.101	0.085	-0.040	0.238	0.061	0.222	-0.036	0.121	-0.060
5	H2O	0.017	0.117	0.019	0.290	0.036	0.175	-0.041	-0.084	0.120
Ŭ	EE	0.029	0.145	0.008	0.238	0.037	0.182	-0.008	0.072	-0.035
	vac	-0,002	-0,100	0,077	-2,164	0,075	-0,105	0,003	0,065	0,010
8	H2O	0,159	-0,327	-0,173	-2,098	-0,014	-0,215	0,047	-0,020	0,006
-	EE	0,101	-0,291	-0,114	-2,128	-0,013	-0,203	0,013	-0,021	0,008
	vac	-1,275	0,070	-0,032	-0,115	-1,307	-1,169	-0,036	-1,060	-0,247
ပိ	H2O	-0,010	0,097	0,016	1,233	0,006	0,129	-0,042	-0,003	0,009
_	EE	-0,005	0,107	0,009	1,216	0,004	0,125	-0,023	-0,001	0,005
	vac	0,034	-0,037	-0,009	0,525	0,025	-0,006	0,003	0,032	-0,007
5	H2O	0,049	-0,089	-0,062	0,562	-0,013	-0,030	-0,010	-0,002	-0,011
Ŭ	EE	0,037	-0,073	-0,050	0,540	-0,013	-0,037	0,001	-0,002	-0,011
_	vac	0,054	-0,031	-0,073	0,187	-0,019	0,009	0,014	-0,037	0,018
5	H2O	0,052	-0,002	-0,046	0,160	0,006	0,030	0,020	-0,010	0,016
Ľ	EE	0,054	-0,010	-0,049	0,178	0,005	0,030	0,014	-0,012	0,017
~	vac	0,003	-0,056	-0,187	-0,117	-0,184	-0,063	0,010	-0,186	0,002
5	H2O	0,118	-0,085	-0,036	-0,051	0,082	-0,047	0,080	0,095	-0,013
Ľ	EE	0,044	-0,096	-0,038	-0,122	0,006	-0,058	0,006	0,018	-0,012

Ι.	vac	0,037	0,121	-0,051	0,810	-0,014	0,120	0,038	-0,017	0,003
13	H2O	0,066	0,066	-0,032	0,836	0,034	0,161	-0,029	0,033	0,001
	EE	0,080	0,112	-0,048	0,798	0,032	0,166	0,026	0,033	-0,001
_	vac	-0,029	-0,093	0,161	-1,762	0,132	-0,182	0,060	0,044	0,088
7	H2O	0,004	-0,178	0,093	-1,710	0,097	-0,244	0,070	-0,080	0,177
	EE	-0,002	-0,200	0,086	-1,724	0,084	-0,254	0,052	-0,564	0,648
	vac	0,203	0,008	-0,261	1,405	-0,058	0,287	-0,076	-0,136	0,078
ž	H2O	-0,003	0,199	-0,087	1,420	-0,090	0,268	-0,072	-0,159	0,069
Ŭ	EE	0,005	0,214	-0,083	1,401	-0,078	0,285	-0,066	-0,157	0,079
6	vac	-0,102	0,043	0,198	0,271	0,096	-0,047	-0,012	0,117	-0,021
5	H2O	-0,003	-0,105	0,097	0,320	0,094	-0,066	-0,042	0,056	0,038
0	EE	-0,014	-0,063	0,101	0,275	0,087	-0,069	-0,008	0,061	0,026
	vac	0,117	0,009	-0,162	0,652	-0,045	0,083	0,043	-0,104	0,059
5	H2O	0,008	0,081	0,038	0,689	0,046	0,086	0,003	0,079	-0,033
0	EE	0,021	0,088	-0,006	0,659	0,015	0,085	0,024	0,027	-0,012
~	vac	0,029	-0,097	0,151	0,352	0,180	-0,064	-0,004	0,155	0,025
5	H2O	0,002	-0,037	0,136	0,319	0,138	-0,076	0,041	0,071	0,067
Ŭ	EE	-0,005	-0,072	0,157	0,355	0,152	-0,078	0,001	0,188	-0,036
	vac	-0,059	-0,013	-0,031	0,198	-0,090	-0,129	0,057	-0,029	-0,061
5	H2O	0,004	-0,026	-0,114	0,148	-0,110	-0,101	0,079	-0,068	-0,042
Ŭ	EE	0,008	-0,074	-0,110	0,196	-0,102	-0,110	0,044	-0,055	-0,047
	vac	0,106	-0,069	-0,066	0,843	0,040	0,007	0,030	0,018	0,022
020	H2O	0,145	-0,143	-0,143	0,878	0,002	-0,012	0,014	-0,004	0,006
Ŭ	EE	0,139	-0,137	-0,136	0,862	0,003	-0,017	0,019	-0,007	0,010
-	vac	0,054	0,145	-0,014	0,937	0,040	0,057	0,142	0,001	0,039
5 0	H2O	0,026	0,070	-0,010	1,040	0,016	-0,079	0,175	-0,028	0,044
Ŭ	EE	0,031	0,084	-0,017	1,007	0,014	-0,053	0,168	-0,031	0,045
~	vac	0,064	0,175	0,017	0,969	0,081	0,090	0,149	-0,015	0,096
05	H2O	0,020	0,112	0,004	1,076	0,024	-0,044	0,176	-0,046	0,070
-	EE	0,014	0,130	0,008	1,032	0,022	-0,027	0,171	-0,058	0,080
3	vac	0,092	-0,053	-0,092	0,761	0,000	0,010	0,029	-0,154	0,154
6	H2O	0,005	-0,003	-0,106	0,798	-0,101	-0,012	0,014	-0,315	0,214
	EE	0,010	-0,009	-0,096	0,781	-0,086	-0,017	0,018	-0,282	0,196
4	vac	0,025	-0,013	-0,016	0,810	0,009	0,000	0,012	0,001	0,008
02	H2O	0,082	-0,076	-0,080	0,816	0,002	0,001	0,005	0,000	0,002
	EE	0,067	-0,062	-0,066	0,813	0,001	-0,003	0,008	-0,003	0,004
6	vac	0,013	0,012	0,004	0,713	0,017	0,029	-0,004	0,021	-0,004
S	H2O	-0,020	0,025	0,022	0,733	0,002	0,012	-0,007	0,003	-0,001
	EE	-0,017	0,027	0,019	0,722	0,002	0,012	-0,002	0,004	-0,002
g	vac	-0,722	0,035	-0,525	4,859	-1,247	-1,450	0,763	-1,662	0,415
(car	H2O	1,899	-0,202	-0,918	8,388	0,980	0,711	0,985	1,380	-0,400
Σ	EE	0,681	-0,095	-0,436	6,884	0,245	-0,657	1,243	-0,905	1,150

Tabe	Tabela A 14 - Variação de Carga - BDMC									
			ET→	ET-PT	Н	AT		ET-F	PT à ET	
		CR	ENOLRAD	FENOLRAD	ENOLRAD	FENOLRAD	ENOLATO	ENOL- RAD	FENOLATO	FENOLRAD
		-	-	-	-	-	-	-	-	-
		NEUTRA	NEUTRA	CR	NEUTRA	CUR	NEUTRA	ENOLATO	NEUTRA	FENOLATO
	vac	-0,149	0,052	0,161	0,199	0,012	-0,041	-0,056	-0,030	0,042
ប	H2O	0,027	0,009	-0,012	0,132	0,015	-0,042	0,078	-0,014	0,029
	EE	0,029	-0,115	-0,050	0,234	-0,021	-0,043	-0,043	-0,021	0,000
	vac	-0,068	-0,016	0,054	0,238	-0,014	0,085	-0,169	0,054	-0,068
G	H2O	-0,039	0,134	0,027	0,155	-0,012	0,084	0,011	0,015	-0,027
	EE	-0,052	-0,015	0,077	0,297	0,025	0,087	-0,154	0,025	0,000
	vac	-0,002	-0,254	0,004	-0,174	0,002	0,144	-0,400	-0,011	0,013
ទ	H2O	-0,041	0,040	0,036	-0,495	-0,005	0,173	-0,174	0,013	-0,018
9	EE	-0,045	-0,250	0,055	-0,193	0,010	0,163	-0,458	0,010	0,000

	vac	0,233	0,641	-0,199	-0,070	0,034	-0,028	0,902	-0,042	0,076
C4	H2O	0,234	0,178	-0,184	0,408	0,050	-0,081	0,493	-0,048	0,098
	EE	0,264	-0,332	-0,314	0,888	-0,050	-0,065	-0,003	-0,050	0,000
	vac	-0,053	-0,518	0,026	-0,485	-0,027	-0,169	-0,402	0,024	-0,051
<u>C</u> 2	H2O	-0,077	-0,199	0,048	-0,768	-0,029	-0,101	-0,175	0,020	-0,049
-	EE	-0,079	-0,497	0,098	-0,474	0,019	-0,118	-0,458	0,019	0,000
	vac	-0,016	-0,037	0,057	0,279	0,041	0,121	-0,174	-0,118	0,159
ဗ္ပ	H2O	0,070	0,060	-0,008	0,192	0,062	0,120	0,010	-0,080	0,142
•	EE	0,051	-0,082	0,340	0,333	0,391	0,123	-0,154	-0,089	0,480
	vac	0.083	-0.060	-0.049	0.321	0.034	0.080	-0.057	0.084	-0.050
5	H2O	0.075	0.072	-0.045	0.245	0.030	0.070	0.077	0.060	-0.030
Ŭ	EE	0.077	-0.048	-0.008	0.349	0.069	0.073	-0.044	0.069	0.000
	vac	0.021	0.080	-0.029	-1.929	-0.008	-0.183	0.284	-0.114	0,106
ø	H2O	0.002	-0.191	-0.011	-1,495	-0.009	-0.189	0.000	-0.014	0.005
0	FF	0,000	0 101	-0.019	-1 831	-0.019	-0 201	0.302	-0.019	0,000
	vac	-0.038	-0.069	0.047	1,483	0.009	0.186	-0.293	0.033	-0.024
ဂ္ပ	H20	0,006	0 172	0.008	1 196	0.014	0.175	0.003	0.011	0.003
0	FF	-0 292	0.183	0.311	1 495	0.019	0 190	-0.299	0,019	0,000
	vac	-0.001	-0.024	-0.004	0.275	-0.005	-0.034	0,009	-0.002	-0.003
10	H20	-0.007	-0.072	0,000	0.385	-0.007	-0.041	-0.038	-0.001	-0.006
C	FF	-0.009	-0.006	0,000	0,305	-0.002	-0.041	0,000	-0.002	0,000
		0.046	-0,000	-0.037	0,505	0,002	-0,041	0,020	-0,002	0,000
7	H2O	0,040	0.048	-0,007	0,042	0,009	0.016	0,047	0,012	0,021
Ó	FE	0,012	0,040	-0,003	0,040	0,003	0,010	0,044	0,002	0,007
		0,010	-0.029	-0,017	0,000	0,001	-0.011	-0.015	0,001	0,000
12		0,005	-0,025	0,000	0,350	0,005	-0,011	-0,013	0,001	0,002
Ù		0,003	-0,033	0,000	0,330	0,000	-0,021	-0,003	0,001	0,004
		0,003	-0,024	-0,003	0,345	0,000	-0,024	0,003	0,000	0,000
13		0,040	0,004	-0,049	0,220	-0,009	-0,004	0,100	-0,022	0,013
ò		0,003	-0,029	-0,013	0,328	-0,010	-0,037	0,031	-0,010	0,000
		0,010	0,009	-0,023	0,209	-0,013	-0,030	0,155	-0,013	0,000
_	vac	0,014	0,030	0,024	-1,900	0,036	-0,233	0,200	-0,039	0,077
7	$\Box \gamma \cap$		0 2 2 0	0 000	1 550	N N / /	0.244		1 106	
C14	H2O	0,085	-0,329	-0,008	-1,550	0,077	-0,244	0,000	-0,086	0,163
C14	H2O EE	0,085	-0,329 1,941	-0,008 1,818	-1,550 -1,885	-0,077	-0,244 -0,255	0,000 0,302	-0,086	0,163
15 C14	H2O EE vac	0,085 -1,894 -0,019	-0,329 1,941 -0,045	-0,008 1,818 -0,069	-1,550 -1,885 1,520	-0,077 -0,076 -0,088	-0,244 -0,255 0,226	0,000 0,302 -0,290	-0,086 -0,076 -0,145	0,163 0,000 0,057 0,041
C15 C14	H2O EE vac H2O	0,085 -1,894 -0,019 0,007	-0,329 1,941 -0,045 0,215	-0,008 1,818 -0,069 -0,120	-1,550 -1,885 1,520 1,240	0,077 -0,076 -0,088 -0,113	-0,244 -0,255 0,226 0,219	0,000 0,302 -0,290 0,003	-0,086 -0,076 -0,145 -0,154	0,163 0,000 0,057 0,041
C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004	-0,329 1,941 -0,045 0,215 -0,071	-0,008 1,818 -0,069 -0,120 -0,151	-1,550 -1,885 1,520 1,240 1,537	0,077 -0,076 -0,088 -0,113 -0,147	-0,244 -0,255 0,226 0,219 0,232	0,000 0,302 -0,290 0,003 -0,299	-0,086 -0,076 -0,145 -0,154 -0,147	0,163 0,000 0,057 0,041 0,000
l6 C15 C14	H2O EE Vac H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005	-0,329 1,941 -0,045 0,215 -0,071 -0,026	-0,008 1,818 -0,069 -0,120 -0,151 0,102	-1,550 -1,885 1,520 1,240 1,537 0,275	0,077 -0,076 -0,088 -0,113 -0,147 0,097	-0,244 -0,255 0,226 0,219 0,232 -0,037	0,000 0,302 -0,290 0,003 -0,299 0,006	-0,086 -0,076 -0,145 -0,154 -0,147 0,071	0,163 0,000 0,057 0,041 0,000 0,026
C16 C15 C14	H2O EE Vac H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050	0,163 0,000 0,057 0,041 0,000 0,026 0,062
C16 C15 C14	H2O EE Vac H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 0,125	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 0,052	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062
17 C16 C15 C14	H2O EE H2O EE Vac H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 0,000	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,055 -0,053	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,000 0,054
C17 C16 C15 C14	H2O EE Vac H2O EE Vac H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 0,020	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,025	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,062 0,000 0,054 -0,028
C17 C16 C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,122	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,122	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,062 0,000 0,054 -0,028 0,000
18 C17 C16 C15 C14	H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,010	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 0,068	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,070	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026
C18 C17 C16 C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,010 0,032	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 0,054	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,026	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,062	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065
C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,010 0,032 0,027	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 -0,054	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 0,026	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 0 103	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,065 0,000 0,026 0,065 0,000
19 C18 C17 C16 C15 C14	H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 0,108	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 0,071	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 0,030	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 0,000	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 0,015
C19 C18 C17 C16 C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,047	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 0,039	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,169	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 0,007	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000
C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,040	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 0,030	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,002	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 0,026	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 0,018	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000
20 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,042 0,040	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,0108 0,017 0,019 0,007	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,039 0,008	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,003	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 0,010	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 0,004	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006
O20 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,042 0,016	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,039 -0,008 -0,022	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 0,002 -0,003 0,002 -0,003 0,002 -0,007	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,004 -0,007	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000
020 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,041 0,042 0,010 0,016 0,024	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,019	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,039 -0,008 -0,023 0,017	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 -0,007 0,007	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 -0,008	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,014	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,007 0,025	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,000
21 020 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,042 0,010 0,016 0,024	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,016 0,196 0,025	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,039 -0,008 -0,023 -0,017 -0,025	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 -0,003 0,002 -0,007 0,007 0,012	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,005	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,212	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,007 -0,035 -0,035 -0,020	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,022 0,000 0,021 0,000 0,002 0,000 0,002 0,000 0,021 0,000 0,002 0,000 0,021 0,000 0,000 0,021 0,000 0,000 0,021 0,000 0,000 0,021 0,000 0,000 0,026 0,000 0,026 0,000 0,026 0,000 0,000 0,054 0,000 0,000 0,026 0,000 0,000 0,005 0,000
O21 O20 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O EE	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,041 0,042 0,010 0,016 0,024 0,049 0,040	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,040	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,039 -0,039 -0,008 -0,023 -0,017 -0,036 -0,024	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 -0,007 0,007 0,013 -0,022	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,004 -0,007 -0,035 -0,030 -0,032	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000
021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,041 0,042 0,010 0,024 0,024 0,049 0,049	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,149 0,042	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,036 -0,039 -0,039 -0,039 -0,008 -0,023 -0,017 -0,036 -0,081 0,040	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,900	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 -0,007 0,007 0,013 -0,032 0,045	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,022	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270	-0,086 -0,076 -0,145 -0,154 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,004 -0,007 -0,035 -0,035 -0,035 -0,035 -0,035 -0,032 0,082	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,000 0,043 0,000
22 021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,041 0,041 0,042 0,016 0,024 0,024 0,049 0,032 0,032	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,149 0,142 0,062	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,036 -0,039 -0,039 -0,039 -0,039 -0,008 -0,023 -0,017 -0,036 -0,017 -0,036 -0,081 -0,016 0,042	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,898	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 -0,007 0,007 0,013 -0,032 0,016 0,024	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,009 -0,009 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,023 0,045	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270 0,151	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,004 -0,004 -0,007 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,035 -0,004 -0,004 -0,007 -0,035 -0,035 -0,004 -0,004 -0,004 -0,004 -0,004 -0,004 -0,005	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,062 0,000 0,054 -0,028 0,000 0,026 0,000 0,026 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,096
022 021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac H2O EE Vac <tr tr=""> V</tr>	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,065 0,027 0,038 0,041 0,041 0,041 0,042 0,010 0,016 0,024 0,024 0,049 0,032 0,032 0,049 0,032 0,067 0,007	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,149 0,142 0,068	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,036 -0,039 -0,039 -0,039 -0,039 -0,039 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,017 -0,036 -0,023 -0,0017 -0,036 -0,008 -0,023 -0,0017 -0,008 -0,008 -0,008 -0,008 -0,008 -0,008 -0,008 -0,009 -0,009 -0,009 -0,030 -0,036 -0,039 -0,039 -0,039 -0,039 -0,039 -0,039 -0,039 -0,039 -0,039 -0,008 -0,0043 -0,008 -0	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,898 1,073 0,020	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 0,003 0,002 -0,007 0,007 0,013 -0,032 0,016 0,024 0,055	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,023 -0,045 0,022	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270 0,151 0,180	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,015 0,002 -0,018 -0,004 -0,007 -0,035 -0,035 -0,030 -0,032 -0,080 -0,044 0,055	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,000 0,026 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,096 0,068
022 021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,042 0,010 0,041 0,042 0,010 0,016 0,024 0,049 0,049 0,032 0,067 0,067 0,072	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,149 0,142 0,068 0,173 0,070	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,036 -0,039 -0,039 -0,039 -0,039 -0,039 -0,008 -0,023 -0,017 -0,036 -0,017 -0,036 -0,043 -0,043 -0,044	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,898 1,073 0,936 0,724	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,007 0,007 0,007 0,013 -0,032 0,016 0,024 -0,055 0,044	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,023 -0,045 -0,030	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270 0,151 0,180 0,270	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,018 -0,004 -0,007 -0,035 -0,035 -0,030 -0,032 -0,080 -0,044 -0,055 0,405	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,054 -0,028 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,096 0,068 0,000
23 022 021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,042 0,010 0,041 0,042 0,010 0,016 0,024 0,049 0,049 0,049 0,049 0,067 0,067 0,070 0,070	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,149 0,142 0,068 0,173 -0,070 0,070	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,036 -0,039 -0,036 -0,039 -0,039 -0,039 -0,039 -0,039 -0,039 -0,008 -0,023 -0,017 -0,036 -0,017 -0,023 -0,017 -0,023 -0,017 -0,023 -0,016 -0,014 -0,012 -0,014 -0,012 -0,014 -0,012 -0,014 -0,014 -0,014 -0,020 -0,014 -0,014 -0,020 -0,014 -0,020 -0,014 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,016 -0,020 -0,014 -0,016 -0,020 -0,014 -0,020 -0,020 -0,014 -0,016 -0,020 -0,014 -0,016 -0,020 -0,020 -0,014 -0,020 -0,020 -0,014 -0,016 -0,020 -0,020 -0,014 -0,016 -0,020 -0,020 -0,014 -0,016 -0,020 -0,014 -0,016 -0,020 -0,014 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,020 -0,014 -0,016 -0,020 -0,020 -0,014 -0,020 -0,020 -0,014 -0,020 -0,014 -0,020 -0,020 -0,020 -0,014 -0,020 -0,020 -0,020 -0,014 -0,020 -0,020 -0,020 -0,014 -0,020 -0,00	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,898 1,073 0,936 0,724	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,007 0,007 0,007 0,013 -0,032 0,016 0,024 -0,055 -0,044 0,044	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,023 -0,045 -0,030 -0,026	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270 0,151 0,180 0,270 0,026	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,018 -0,004 -0,007 -0,035 -0,035 -0,030 -0,032 -0,080 -0,044 -0,055 -0,195 -0,195 -0,195	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,054 0,000 0,026 0,065 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,043 0,000 0,096 0,068 0,000
023 022 021 020 C19 C18 C17 C16 C15 C14	H2O EE Vac	0,085 -1,894 -0,019 0,007 0,004 -0,005 0,017 0,011 0,072 0,065 0,065 0,065 0,010 0,032 0,027 0,038 0,041 0,041 0,041 0,042 0,010 0,041 0,042 0,016 0,024 0,049 0,049 0,049 0,049 0,049 0,067 0,067 0,067 0,070 0,072 0,005	-0,329 1,941 -0,045 0,215 -0,071 -0,026 -0,100 -0,030 -0,041 -0,015 -0,044 -0,042 -0,068 -0,054 0,030 -0,108 0,017 0,019 -0,007 -0,016 0,196 0,035 0,149 0,142 0,068 0,173 -0,070 -0,075 -0,044 -0,075 -0,044 -0,054 -0,075 -	-0,008 1,818 -0,069 -0,120 -0,151 0,102 0,095 0,044 -0,125 -0,009 -0,030 0,123 0,079 0,036 -0,036 -0,071 -0,039 -0,036 -0,017 -0,023 -0,017 -0,026 -0,017 -0,026 -0,016 -0,014 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,014 -0,028 -0,028 -0,016 -0,028 -0,012 -0,016 -0,028 -0,014 -0,028 -0,028 -0,016 -0,028 -0,012 -0,016 -0,028 -0,028 -0,012 -0,016 -0,028 -0,016 -0,028 -0,016 -0,028 -0,028 -0,028 -0,012 -0,016 -0,028 -0,028 -0,028 -0,016 -0,028 -0,028 -0,028 -0,014 -0,028 -0,028 -0,028 -0,028 -0,028 -0,014 -0,028 -0,02	-1,550 -1,885 1,520 1,240 1,537 0,275 0,381 0,301 0,627 0,636 0,655 0,324 0,352 0,339 0,184 0,285 0,168 0,663 0,799 0,784 0,822 1,022 0,894 0,898 1,073 0,936 0,724 0,800 0,724 0,936 0,724 0,724 0,800 0,724 0,936 0,724 0,800 0,724 0,936 0,724 0,724 0,800 0,724 0,724 0,800 0,724 0,725 0,724 0,724 0,724 0,724 0,724 0,724 0,725 0,724	0,077 -0,076 -0,088 -0,113 -0,147 0,097 0,112 0,055 -0,053 0,056 0,035 0,035 0,133 0,111 0,063 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,030 0,002 -0,007 0,007 0,007 0,013 -0,032 0,016 0,024 -0,055 -0,044 -0,054 -0,051 -0,044 -0,051 -0,051 -0,051 -0,055 -0,007 0,007 0,002 -0,007 0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,007 0,007 0,007 0,007 0,007 0,007 0,007 0,007 0,002 -0,007 0,007 0,002 -0,007 0,007 0,002 -0,005 -0,007 0,007 0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,007 0,002 -0,005 -0,007 0,007 0,002 -0,007 0,002 -0,002 0,002 -0,007 0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,007 0,002 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,007 -0,005 -0,004 -0,005 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,004 -0,004 -0,005 -0,004 -0,005 -0,004 -0,005 -0,00	-0,244 -0,255 0,226 0,219 0,232 -0,037 -0,045 -0,045 -0,019 0,005 0,007 -0,017 -0,027 -0,030 -0,103 -0,099 -0,097 -0,026 -0,010 -0,014 0,008 -0,096 -0,072 0,023 -0,045 -0,030 -0,026 -0,009 -0,026 -0,009	0,000 0,302 -0,290 0,003 -0,299 0,006 -0,038 0,026 0,050 0,045 0,014 -0,015 -0,009 0,003 0,171 0,032 0,155 0,087 0,013 0,014 0,212 0,180 0,270 0,151 0,180 0,270 0,026 0,026	-0,086 -0,076 -0,145 -0,147 0,071 0,050 0,055 -0,107 0,084 0,035 0,107 0,046 0,063 0,058 -0,015 0,002 -0,018 -0,018 -0,007 -0,035 -0,007 -0,035 -0,030 -0,032 -0,032 -0,080 -0,044 -0,055 -0,195 -0,195 -0,317 -0,057	0,163 0,000 0,057 0,041 0,000 0,026 0,062 0,000 0,054 -0,028 0,000 0,026 0,000 0,026 0,000 0,026 0,000 -0,056 -0,015 0,000 0,021 0,006 0,000 0,021 0,006 0,000 0,042 0,043 0,000 0,042 0,043 0,000 0,096 0,068 0,000 0,151 0,216

D	vac	0,377	0,025	-0,185	5,392	0,192	-0,125	0,527	-0,538	0,730
car	H2O	0,750	-0,225	-0,486	6,327	0,264	-0,245	0,770	-0,515	0,779
a N	EE	-1,541	0,986	1,524	7,137	-0,017	-0,211	-0,344	-0,498	0,481
	Fonte: Danilo Melle de Proença, 2023									

Tabela B 1 - Análise de ligação e antiligação NBO de CUR								
NBO	Occupancy	Energy						
BD (2) C 10 - C 11	1,64340	-0,30596						
BD (2) C 16 - C 17	1,64408	-0,30661						
BD (2) C8-C9	1,65072	-0,29355						
BD (2) C 14 - C 15	1,65208	-0,29566						
BD (2) C 12 - C 13	1,71015	-0,32025						
BD (2) C 18 - C 19	1,71111	-0,32580						
BD (2) C4-C5	1,74618	-0,28893						
BD(2)C6-C7	1,85903	-0,33580						
BD (2) C 1 - C 2	1,85937	-0,32270						
BD(1)C5-C6	1,96201	-0,73737						
BD (1) C 8 - C 13	1,96604	-0,76723						
BD (1) C 14 - C 19	1,96766	-0,77127						
BD(1)C8-C9	1,96989	-0,77385						
BD (1) C 4 - C 5	1,96997	-0,80133						
BD (1) C 17 - C 18	1,97035	-0,81332						
BD (1) C 11 - C 12	1,97049	-0,79759						
BD (1) C 14 - C 15	1,97104	-0,81428						
BD (1) C 1 - H 25	1,97337	-0,59912						
BD (1) C 10 - C 11	1,97409	-0,79673						
BD (1) C 16 - C 17	1,97409	-0,79898						
BD(1)C7-C14	1,97422	-0,74175						
BD (1) C 1 - C 8	1,97426	-0,74072						
BD (1) C 7 - H 29	1,97445	-0,58262						
BD(1)C9-C10	1,97451	-0,78528						
BD (1) C 15 - C 16	1,97462	-0,78628						
BD (1) C 13 - H 32	1,97464	-0,60228						
BD (1) C 4 - H 27	1,97476	-0,60414						
BD (1) C 19 - H 35	1,97478	-0,59858						
BD (1) C 12 - C 13	1,97524	-0,81145						
BD (1) C 18 - C 19	1,97550	-0,81407						
BD (1) C 6 - H 28	1,97571	-0,59527						
BD (1) C 5 - O 21	1,97614	-1,02616						
BD (1) C 6 - C 7	1,97687	-0,82390						
BD (1) C 10 - H 31	1,97748	-0,59250						
BD (1) C 16 - H 34	1,97749	-0,59307						
BD (1) C 2 - H 26	1,97786	-0,59255						
BD (1) C 2 - C 3	1,97826	-0,73437						
BD (2) C 3 - O 22	1,97881	-0,43665						

BD (1) C 15 - H 33	1,97936	-0,63775
BD (1) C 1 - C 2	1,97938	-0,82387
BD(1)C9-H30	1,97946	-0,59254
BD (1) C 3 - C 4	1,98103	-0,75901
BD (1) C 18 - O 43	1,99051	-1,00610
BD (1) C 12 - O 24	1,99054	-1,00797
BD (1) C 44 - H 46	1,99163	-1,05523
BD (1) C 39 - H 42	1,99164	-0,61569
BD (1) O 24 - C 39	1,99310	-0,94338
BD (1) O 43 - C 44	1,99310	-0,93041
BD (1) C 11 - O 20	1,99350	-1,02776
BD (1) C 17 - O 23	1,99350	-1,02797
BD (1) C 3 - O 22	1,99399	-1,14930
BD (1) C 44 - H 45	1,99484	-0,66762
BD (1) C 44 - H 47	1,99484	-0,10180
BD (1) C 39 - H 40	1,99485	-0,61754
BD (1) C 39 - H 41	1,99485	-0,61753
LP (1) O 20	1,97953	-0,70844
LP (1) O 23	1,97951	-0,74256
LP (1) O 21	1,97339	-1,30131
LP (1) O 22	1,97001	-0,74425
LP (1) O 43	1,96277	-0,65556
LP (2) O 43	1,96277	-0,41086
LP (1) O 24	1,96276	-0,66651
LP (2) O 23	1,87572	-0,40644
LP (2) O 20	1,87532	-0,47472
LP (2) O 24	1,87232	-0,41498
LP (2) O 22	1,86005	-0,39242
LP (2) O 21	1.79314	-0.41371

Tabela B 2 - Análise de ligação e antiligação NBO de DMC			
NBO	Occupancy	Energy	
BD(1) C1-C2	1,97723	-0,81724	
BD(2) C1-C2	1,85623	-0,32081	
BD(1) C1-C8	1,97471	-0,73979	
BD(1) C1-H24	1,97355	-0,5768	
BD(1) C2-C3	1,9787	-0,73482	
BD(1) C2-H25	1,97646	-0,58937	
BD(1) C3-C4	1,98102	-0,77216	
BD(1) C3-O22	1,9937	-111,965	
BD(2) C3-O22	1,97759	-0,43124	
BD(1) C4-C5	1,96921	-0,79755	
BD(2) C4-C5	1,7434	-0,29223	

BD(1) C4-H26	1,97467	-0,58921		
BD(1) C5-C6	1,96213	-0,73896		
BD(1) C5-O21	1,97962	-102,688		
BD(1) C6-C7	1,97692	-0,82759		
BD(2) C6-C7	1,85757	-0,32602		
BD(1) C6-H27	1,9755	-0,59781		
BD(1) C7-C14	1,97416	-0,74182		
BD(1) C7-H28	1,97458	-0,58296		
BD(1) C8-C9	1,97118	-0,76852		
BD(1) C8-C13	1,97069	-0,76963		
BD(2) C8-C13	1,66118	-0,29644		
BD(1) C9-C10	1,97546	-0,79591		
BD(2) C9-C10	1,72051	-0,30328		
BD(1) C9-H29	1,97962	-0,59088		
BD(1) C10-C11	1,97232	-0,79008		
BD(1) C10-H30	1,97668	-0,59472		
BD(1) C11-O20	1,9929	-102498		
BD(1) C12-C13	1,96752	-0,7882		
BD(1) C12-O43	1,98972	-101,84		
BD(1) C13-H31	1,9757	-0,59757		
BD(1) C14-C15	1,97146	-0,77742		
BD(1) C14-C19	1,972	-0,77602		
BD(2) C14-C19	1,64066	-0,2958		
BD(1) C15-C16	1,97568	-0,79698		
BD(2) C15-C16	1,71145	-0,30774		
BD(1) C15-H32	1,97961	-0,5986		
BD(1) C16-C17	1,97301	-0,79179		
BD(1) C16-H33	1,9777	-0,60653		
BD(1) C17-C18	1,97786	-0,80374		
BD(2) C17-C18	1,99453	-0,3127		
BD(1) C17-O23	1,99453	-103749		
BD(1) C18-C19	1,97391	-0,79217		
BD(1) C18-H38	1,97817	-0,60795		
BD(1) C19-H34	1,97923	-0,59576		
BD(1) O20-H35	1,98407	-0,8768		
BD(1) O21-H36	1,98467	-0,81062		
BD(1) O23-H37	1,98718	-0,8397		
BD(1) C39-H40	1,9574	-0,6655		
BD(1) C39-H41	1,99398	-0,6472		
BD(1) C39-H42	1,98675	-0,62117		
BD(1) C39-O43	1,99382	-0,99317		
LP(2)O20	1,8856	-0,40931		
LP(1)O21	1,9747	-0,67691		
LP(2)O21	1,7935	-0,46565		

LP(1)O22	1,9708	-0,74343	
LP(2)O22	1,8621	-0,38789	
LP(1)O23	1,9809	-0,71318	
LP(2)O23	1,8817	-0,42816	
LP(1)O43	1,9598	-0,63101	
LP(2)O43	1,8746	-0,40856	
nte: Danila Malla da Draanaa, 2022			

Tabela B 3 - Análise de ligação e antiligação NBO de BDMC			
NBO	Occupancy	Energy	
BD (1) C 1 - C 2	1,97488	-0,82227	
BD (2) C 1 - C 2	1,85380	-0,32207	
BD (1) C 1 - C 8	1,97011	-0,7511	
BD (1) C 1 - H 24	1,96412	-0,5788	
BD (1) C 2 - C 3	1,98088	-0,73608	
BD (1) C 2 - H 25	1,97866	-0,59632	
BD (1) C 3 - C 4	1,98018	-0,76244	
BD (1) C 3 - O 22	1,99403	-113.593	
BD (2) C 3 - O 22	1,97837	-0,43642	
BD (1) C 4 - C 5	1,98120	-0,81209	
BD (2) C 4 - C 5	1,76107	-0,31188	
BD (1) C 4 - H 26	1,97405	-0,59086	
BD (1) C 5 - C 6	1,97608	-0,75395	
BD (1) C 5 - O 21	1,99314	-104.897	
BD (1) C 6 - C 7	1,97602	-0,82321	
BD (2) C 6 - C 7	1,85911	-0,32766	
BD (1) C 6 - H 27	1,97499	-0,59555	
BD (1) C 7 - C 14	1,97404	-0,74491	
BD (1) C 7 - H 28	1,97445	-0,58357	
BD (1) C 8 - C 9	1,97307	-0,777	
BD (1) C 8 - C 13	1,97434	-0,78805	
BD (2) C 8 - C 13	1,64289	-0,29687	
BD (1) C 9 - C 10	1,97592	-0,79623	
BD (2) C 9 - C 10	1,71086	-0,30756	
BD (1) C 9 - H 29	1,97959	-0,59712	
BD (1) C 10 - C 11	1,97292	-0,77734	
BD (1) C 10 - H 30	1,97760	-0,67774	
BD (1) C 11 - C 12	1,97781	-0,86554	
BD (2) C 11 - C 12	1,64772	-0,3121,9	
BD (1) C 11 - O 20	1,99447	-116.792	
BD (1) C 12 - C 13	1,97500	-254.611	
BD (1) C 12 - H 38	1,97799	-0,7631	
BD (1) C 13 - H 31	1,97869	-0,59243	
BD (1) C 14 - C 15	1,97123	-0,77922	

BD (1) C 14 - C 1,9	1,97243	-0,87024		
BD (1) C 15 - C 16	1,97572	-0,79876		
BD (2) C 15 - C 16	1,71144	-0,30824		
BD (1) C 15 - H 32	1,97955	-0,5983		
BD (1) C 16 - C 17	1,97291	-0,79271		
BD (1) C 16 - H 33	1,97758	-0,59504		
BD (1) C 17 - C 18	1,97769	-0,84669		
BD (1) C 17 - O 23	1,99447	-105.721		
BD (1) C 18 - C 1,9	1,97485	-0,83587		
BD (2) C 18 - C 1,9	1,69561	-0,30834		
BD (1) C 18 - H 39	1,97800	-0,11675		
BD (1) C 1,9 - H 34	1,97936	-0,60043		
BD (1) O 20 - H 35	1,98730	-0,84885		
BD (1) O 21 - H 36	1,98400	-0,81309		
BD (1) O 23 - H 37	1,98731	-0,84809		
LP(1) C14	1,05307	-0,11974		
LP(1) O20	1,98101	-0,70355		
LP(2) O20	1,88223	-0,41321		
LP(1) O21	1,97392	-0,67176		
LP(2) O21	1,79259	-0,37778		
LP(1) O22	1,97054	-0,74538		
LP(2) O22	1,86175	-0,38785		
LP(1) O23 1,98100		-0,71365		
LP(2) O23	1,88255	-0,41416		

Tabela B 4 - Análise de teoria de perturbação de segunda ordem selecionada da matriz Fock em base NBO de CUR				
Donor NBO (i)	Acceptor NBO (j)	E(2) kcal/mol	E(j)-E(i) a.u.	F(i,j) a.u.
LP (1) O 20	BD*(1) C 6 - C 7	0,81	0,23	0,012
LP (1) O 20	BD*(1) C 10 - C 11	15,18	0,10	0,034
LP (1) O 20	BD*(1) C 10 - H 31	5,98	0,12	0,024
LP (1) O 20	BD*(1) C 11 - C 12	13,93	0,73	0,090
LP (1) O 20	BD*(1) C 16 - C 17	0,57	0,25	0,011
LP (1) O 20	BD*(1) C 44 - H 45	2,15	0,20	0,019
LP (2) O 20	BD*(1) C 1 - C 8	3,19	0,97	0,051
LP (2) O 20	BD*(1) C 1 - H 25	1,44	0,93	0,034
LP (2) O 20	BD*(1) C 2 - C 3	2,74	0,96	0,047
LP (2) O 20	BD*(1) C 2 - H 26	1,51	0,96	0,035
LP (2) O 20	BD*(2) C 3 - O 22	0,79	0,51	0,019
LP (2) O 20	BD*(1) C 4 - H 27	27,32	0,75	0,131
LP (2) O 20	BD*(2) C 6 - C 7	8,76	0,47	0,057
LP (2) O 20	BD*(1) C 8 - C 9	4,74	1,04	0,064
LP (2) O 20	BD*(1) C 9 - C 10	78,00	0,59	0,197
LP (2) O20	BD*(1) C 9 - H 30	4,54	0,92	0,059
--------------	---------------------	---------	------	-------
LP (2) O20	BD*(1) C 11 - C 12	66,22	0,49	0,165
LP (2) O20	BD*(1) C 11 - O 20	36,68	0,64	0,141
LP (2) O20	BD*(1) C 12 - O 24	198,75	0,22	0,193
LP (2) O20	BD*(1) C 13 - H 32	46,95	0,58	0,152
LP(2)O20	BD*(1) C 16 - C 17	3696,20	0,02	0,250
LP(2)O20	BD*(2) C 16 - C 17	385,40	0,08	0,168
LP(2)O20	BD*(1) C 17 - O 23	9,64	0,81	0,081
LP (2) O20	BD*(1) C 18 - C 19	1,68	1,06	0,039
LP (2) O20	BD*(1) O 23 - H 38	65,81	1,60	0,298
LP (2) O20	BD*(1) O 24 - C 39	3,99	2,63	0,094
LP (2) O20	BD*(1) C 44 - H 46	15,20	0,75	0,098
LP (2) O20	BD*(1) C 44 - H 47	56,14	1,86	0,297
LP (1) O 21	BD*(1) C 1 - C 8	16,08	1,79	0,152
LP (1) O 21	BD*(1) C 1 - H 25	7,00	1,76	0,099
LP (1) O 21	BD*(1) C 2 - C 3	12,54	1,79	0,134
LP (1) O 21	BD*(1) C 2 - H 26	7,61	1,78	0,104
LP (1) O 21	BD*(1) C 3 - C 4	0,87	1,88	0,036
LP (1) O 21	BD*(1) C 3 - O 22	1,27	1,93	0,044
LP (1) O 21	BD*(2) C 3 - O 22	2,75	1,34	0,059
LP (1) O 21	BD*(1) C 4 - C 5	12,58	2,00	0,142
LP (1) O 21	BD*(2) C 4 - C 5	0,78	1,40	0,032
LP (1) O 21	BD*(1) C 4 - H 27	109,36	1,57	0,372
LP (1) O 21	BD*(1) C 6 - C 7	1087,95	0,83	0,849
LP (1) O 21	BD*(2) C 6 - C 7	26,62	1,30	0,170
LP (1) O 21	BD*(1) C 8 - C 9	24,49	1,87	0,191
LP (1) O 21	BD*(2) C 8 - C 9	1510,27	0,41	0,776
LP (1) O 21	BD*(1) C 9 - C 10	301,59	1,42	0,586
LP (1) O 21	BD*(1) C 9 - H 30	22,23	1,75	0,176
LP (1) O 21	BD*(1) C 10 - C 11	1220,07	0,69	0,821
LP (1) O 21	BD*(1) C 10 - H 31	1145,40	0,71	0,809
LP (1) O 21	BD*(1) C 11 - C 12	225,62	1,32	0,488
LP (1) O 21	BD*(1) C 11 - O 20	148,58	1,47	0,418
LP (1) O 21	BD*(1) C 12 - O 24	391,06	1,05	0,572
LP (1) O 21	BD*(1) C 13 - H 32	180,04	1,41	0,451
LP (1) O 21	BD*(1) C 15 - H 33	0,95	1,81	0,037
LP (1) O 21	BD*(1) C 16 - C 17	819,29	0,85	0,744
LP (1) O 21	BD*(2) C 16 - C 17	286,41	0,91	0,500
LP (1) O 21	BD*(1) C 17 - O 23	43,96	1,63	0,240
LP (1) O 21	BD*(1) C 18 - C 19	9,17	1,88	0,117
LP (1) O 21	BD*(1) O 23 - H 38	400.59	2,42	0,883
LP (1) O 21	BD*(1) O 24 - C 39	28.22	3,46	0,280
LP (1) O 21	BD*(1) C 39 - H 40	1580.33	0,47	0,767
LP (1) O 21	BD*(1) C 44 - H 45	2627,58	0,80	1,294

LP (1) O 21	BD*(1) C 44 - H 46	64,41	1,58	0,286
LP (1) O 21	BD*(1) C 44 - H 47	363,64	2,69	0,885
LP (2) O21	BD*(1) C 1 - C 8	1,65	0,90	0,036
LP (2) O21	BD*(1) C 1 - H 25	0,74	0,87	0,024
LP (2) O21	BD*(1) C 2 - C 3	1,44	0,90	0,033
LP (2) O21	BD*(1) C 2 - H 26	0,79	0,90	0,025
LP (2) O21	BD*(2) C 3 - O 22	1,30	0,45	0,022
LP (2) O21	BD*(2) C 4 - C 5	45,52	0,51	0,139
LP (2) O21	BD*(1) C 4 - H 27	14,39	0,69	0,093
LP (2) O21	BD*(2) C 6 - C 7	8,33	0,41	0,053
LP (2) O21	BD*(1) C 8 - C 9	2,45	0,98	0,046
LP (2) O 21	BD*(1) C 9 - C 10	44,05	0,53	0,144
LP (2) O 21	BD*(1) C 9 - H 30	2,36	0,86	0,042
LP (2) O 21	BD*(1) C 11 - C 12	37,02	0,43	0,118
LP (2) O 21	BD*(1) C 11 - O 20	19,79	0,58	0,100
LP (2) O 21	BD*(1) C 12 - O 24	129,16	0,16	0,135
LP (2) O21	BD*(1) C 13 - H 32	24,84	0,52	0,107
LP (2) O 21	BD*(2) C 16 - C 17	810,03	0,02	0,118
LP (2) O21	BD*(1) C 17 - O 23	4,94	0,75	0,057
LP (2) O21	BD*(1) C 18 - C 19	0,91	0,99	0,028
LP (2) O 21	BD*(1) O 23 - H 38	33,70	1,54	0,214
LP (2) O21	BD*(1) O 24 - C 39	1,90	2,57	0,066
LP (2) O21	BD*(1) C 44 - H 46	6,79	0,69	0,064
LP (2) O21	BD*(1) C 44 - H 47	28,31	1,80	0,212
LP (1) O 23	BD*(1) C 1 - C 2	0,75	1,37	0,029
LP (1) O 23	BD*(2) C 1 - C 2	0,63	0,80	0,020
LP (1) O 23	BD*(1) C 1 - C 8	0,64	1,23	0,025
LP (1) O 23	BD*(1) C 2 - C 3	0,56	1,23	0,024
LP (1) O 23	BD*(2) C 3 - O 22	0,58	0,78	0,021
LP (1) O 23	BD*(1) C 4 - H 27	9,48	1,01	0,088
LP (1) O 23	BD*(1) C 6 - C 7	126,01	0,27	0,164
LP (1) O 23	BD*(2) C 6 - C 7	4,90	0,74	0,055
LP (1) O 23	BD*(1) C 8 - C 9	1,78	1,31	0,043
LP (1) O 23	BD*(1) C 9 - C 10	13,83	0,86	0,098
LP (1) O 23	BD*(1) C 9 - H 30	0,88	1,19	0,029
LP (1) O 23	BD*(1) C 10 - C 11	209,20	0,13	0,149
LP (1) O 23	BD*(1) C 10 - H 31	139,59	0,15	0,130
LP (1) O 23	BD*(1) C 11 - C 12	49,14	0,76	0,173
LP (1) O 23	BD*(1) C 11 - O 20	25,62	0,91	0,136
LP (1) O 23	BD*(1) C 12 - O 24	21,28	0,49	0,091
LP (1) O 23	BD*(1) C 13 - H 32	7,79	0,85	0,073
LP (1) O 23	BD*(1) C 16 - C 17	122.07	0,29	0,167
LP (1) O 23	BD*(2) C 16 - C 17	49.21	0,35	0,129
LP (1) O 23	BD*(1) C 16 - H 34	1,10	0,92	0,028
· /				

LP (1) O 23	BD*(1) C 17 - C 18	2,65	1,26	0,052
LP (1) O 23	BD*(1) C 17 - O 23	5,00	1,08	0,065
LP (1) O 23	BD*(1) O 23 - H 38	45,82	1,87	0,262
LP (1) O 23	BD*(1) O 24 - C 39	0,88	2,90	0,045
LP (1) O 23	BD*(1) C 44 - H 45	375,51	0,24	0,267
LP (1) O 23	BD*(1) C 44 - H 46	36,31	1,02	0,172
LP (1) O 23	BD*(1) C 44 - H 47	11,48	2,13	0,140
LP (2) O 23	BD*(1) C 4 - H 27	0,67	0,68	0,020
LP (2) O 23	BD*(2) C 6 - C 7	0,79	0,40	0,016
LP (2) O 23	BD*(1) C 9 - C 10	1,80	0,52	0,028
LP (2) O 23	BD*(1) C 11 - C 12	4,53	0,42	0,040
LP (2) O 23	BD*(1) C 11 - O 20	2,06	0,57	0,031
LP (2) O 23	BD*(1) C 12 - O 24	2,99	0,16	0,020
LP (2) O23	BD*(1) C 13 - H 32	0,57	0,51	0,016
LP (2) O 23	BD*(2) C 16 - C 17	1835,41	0,01	0,145
LP (2) O 23	BD*(1) O 23 - H 38	2,77	1,53	0,060
LP (2) O 23	BD*(1) C 44 - H 46	3,00	0,68	0,042
LP (2) O 23	BD*(1) C 44 - H 47	0,61	1,80	0,030

Tabela B 5 - Análise de teoria de perturbação de segunda ordem selecionada da									
matriz Fock em	base NBO de DMC	j							
Donor NBO (i)	Acceptor NBO (j)	E(2) kcal/mol	E(j)-E(i) a.u.	F(i,j) a.u.					
LP(1)O20	BD*(1)C1-H24	0,77	1,25	0,028					
LP(1)O20	BD*(1)C4-C5	3,4	1,1	0,054					
LP(1)O20	BD*(1)C6-C7	6,11	0,92	0,067					
LP(1)O20	BD*(2)C6-C7	12,4	0,38	0,063					
LP(1)O20	BD*(2)C9-C10	1,35	0,67	0,029					
LP(1)O20	BD*(1)C9-H29	BD*(1)C9-H29 0,67 1,28							
LP(1)O20	BD*(1)C10-C11	0,84	1,3	0,03					
LP(1)O20	BD*(1)C11-C12	6,95	1,29	0,085					
LP(1)O20	BD*(1)C11-O20	9,66		0,068					
LP(1)O20	BD*(2)C15-C16	5,52 0,48		0,05					
LP(1)O20	BD*(1)C16-C17	2,48 1,23		0,049					
LP(2)O20	BD*(2)C3-O22	1,3	0,42	0,022					
LP(2)O20	BD*(1)C4-C5	0,97	0,82	0,026					
LP(2)O20	BD*(1)C6-H27	0,76	0,85	0,023					
LP(2)O20	BD*(2)C11-C12	30,76	0,44	0,113					
LP(2)O20	BD*(2)C17-C18	17,55	0,2	0,057					
LP(1)O21	BD*(1)C1-C8	0,66	2,31	0,035					
LP(1)O21	BD*(1)C1-H24	0,9	1,24	0,03					
LP(1)O21	BD*(1)C4-C5	26,62	1,09	0,152					
LP(1)O21	BD*(1)C5-C6	0,78	1,28	0,028					
LP(1)O21	BD*(1)C6-C7	2,65	0,91	0,044					

LP(1)O21	BD*(2)C6-C7	9,87 0,37		0,055	
LP(1)O21	BD*(1)C6-H27	0,54	0,54 1,12		
LP(1)O21	BD*(2)C9-C10	1,11	0,67	0,026	
LP(1)O21	BD*(1)C11-O20	8,77	0,6	0,065	
LP(1)O21	BD*(2)C15-C16	4,93	0,48	0,047	
LP(1)O21	BD*(1)C16-C17	2,03	1,23	0,045	
LP(2)O21	BD*(2)C1-C2	0,7	0,78	0,021	
LP(2)O21	BD*(1)C1-C8	6,82	2,1	0,112	
LP(2)O21	BD*(1)C1-H24	11,16	1,03	0,101	
LP(2)021	BD*(1)C2-C3	2,06	1,58	0,053	
LP(2)021	BD*(1)C4-C5	37,29	0,88	0,17	
LP(2)021	BD*(2)C4-C5	53,52	0,65	0,17	
LP(2)021	BD*(1)C4-H26	1,5	1	0,036	
LP(2)021	BD*(1)C6-C7	65,97	0,7	0,202	
LP(2)021	BD*(2)C6-C7	304,95	0,16	0,201	
LP(2)021	BD*(1)C6-H27	1,75	0,91	0,037	
LP(2)021	BD*(2)C8-C13	5,47	0,51	0,049	
LP(2)021	BD*(1)C9-C10	1,45	1,1	0,037	
LP(2)021	BD*(2)C9-C10	21,08	0,46	0,09	
LP(2)021	BD*(1)C9-H29	3,6	1,07	0,058	
LP(2)021	BD*(1)C10-H30	0,56	1	0,022	
LP(2)021	BD*(1)C11-O20	145,48	0,39	0,222	
LP(2)021	BD*(1)C14-C19	1,74	1,06	0,04	
LP(2)021	BD*(2)C14-C19	1,13	0,93	0,03	
LP(2)021	BD*(2)C15-C16	113,84	0,27	0,159	
LP(2)021	BD*(1)C16-C17	27,79	1,02	0,157	
LP(2)O21	BD*(1)C18-C19	0,61	3,37	0,042	
LP(2)021	BD*(1)C39-H42	1,32	2,85	0,057	
LP(2)O21	BD*(1)C39-O43	0,66	7,97	0,068	
LP(1)022	BD*(1)C3-C4	5,89	1,31	0,079	
LP(1)O22	BD*(1)C4-C5	0,72	1,16	0,026	
LP(1)O22	BD*(2)C6-C7	0,68	0,44	0,016	
LP(1)O22	BD*(1)C11-O20	0,63	0,67	0,018	
LP(1)022	BD*(1)O21-H36	2,05	3,02	0,071	
LP(1)O23	BD*(1)C4-C5	0,95	1,13	0,029	
LP(1)O23	BD*(1)C6-C7	1,23	0,95	0,031	
LP(1)O23	BD*(2)C6-C7	2,34	0,41	0,028	
LP(1)O23	BD*(1)C11-O20	1,99	0,63	0,032	
LP(1)O23	BD*(2)C15-C16	1,01	0,52	0,022	
LP(1)O23	BD*(1)C17-C18	7,47	1,3	0,088	
LP(1)O23	BD*(1)C18-C19	0,59	3,62	0,041	
LP(2)O23	BD*(1)C1-C8	3,76	2,06	0,08	
LP(2)O23	BD*(1)C1-H24	3,26	0,99	0,052	
LP(2)O23	BD*(1)C2-C3	1,34	1,55	0,041	

LP(2)O23	BD*(1)C4-C5	10,26	0,085		
LP(2)O23	BD*(2)C4-C5	0,53	0,62	0,017	
LP(2)O23	BD*(1)C6-C7	14,26	0,67	0,089	
LP(2)O23	BD*(2)C6-C7	75,82	0,12	0,086	
LP(2)O23	BD*(1)C6-H27	D*(1)C6-H27 0,51 0,87			
LP(2)O23	BD*(2)C8-C13	3 0,89 0,47			
LP(2)O23	BD*(2)C9-C10	4,11	0,039		
LP(2)O23	BD*(1)C9-H29	0,71	0,025		
LP(2)O23	BD*(1)C11-O20	31,67	0,096		
LP(2)O23	BD*(2)C15-C16	16,69	0,23	0,058	
LP(2)O23	BD*(1)C16-C17	3,85 0,98		0,056	
LP(2)023	BD*(2)C17-C18	84,35	0,22	0,131	
LP(2)023	BD*(1)C18-C19	1,24	3,33	0,059	

Tabela B 6 - Análise de teoria de perturbação de segunda ordem selecionada da matriz Fock em base NBO de BDMC								
Donor NBO (i)	Acceptor NBO (j)	E(2) kcal/mol	E(j)-E(i) a.u.	F(i,j) a.u.				
LP(1)C14	BD*(2)C6-C7	377,75	0,02	0,11				
LP(1)O20	BD*(1)C6-H27	1,07	1,11	0,031				
LP(1)O20	BD*(1)C10-C11	0,76	1,31	0,028				
LP(1)O20	BD*(1)C11-C12	6,74	1,32	0,084				
LP(1)O20	BD*(1)C12-C13	2,21	0,51	0,03				
LP(1)O20	BD*(1)C17-C18	0,54	5,74	0,05				
LP(2)O20	BD*(2)C11-C12	34,89	0,45	0,12				
LP(1)O21	BD*(1)C4-C5	7,57	1,3	0,089				
LP(1)O21	BD*(1)C4-H26	0,55	1,08	0,022				
LP(1)O21	BD*(1)C5-C6 4,94		0,52	0,045				
LP(2)O21	BD*(2)C4-C5		0,53	0,147				
LP(2)O21	BD*(2)C6-C7	0,68	0,28	0,013				
LP(1)022	BD*(1)C3-C4	6,12	1,24	0,078				
LP(2)022	BD*(1)C2-C3	37,74	0,54	0,13				
LP(2)022	BD*(1)C3-C4	13,15	0,88	0,098				
LP(2)022	BD*(1)C4-H26	0,52	0,8	0,019				
LP(2)022	BD*(1)C5-C6	1,88	0,24	0,019				
LP(1)O23	BD*(1)C1-C8	1,39	1,19	0,036				
LP(1)O23	BD*(1)C1-H24	0,62	1,22	0,025				
LP(1)O23	BD*(1)C2-C3	9,54	0,86	0,082				
LP(1)O23	BD*(2)C4-C5	12,47	0,86	0,099				
LP(1)023	BD*(1)C5-C6	1,92	0,56	0,029				
LP(1)O23	BD*(1)C11-O20	3,17	1,1	0,053				
LP(1)O23	BD*(1)C12-C13	10,21	0,52	0,065				
LP(1)023	BD*(1)C17-C18	1,39	5,75	0,08				

Figura B 1 - Análise NBO da deslocalização de carga na CUR

Legenda: O valor em azul indicam ocupação de orbitais antiligantes (BD*) para cada ligação, valores em verde indicam a soma de Cargas de NBO para cada fração (sem H), a seta vermelha indica o mecanismo de carga deslocalizada. Fonte: Danilo Melle de Proença, 2023

Figura B 2 - Análise NBO da deslocalização de carga na DMC

Legenda: O valor em azul indicam ocupação de orbitais antiligantes (BD*) para cada ligação, valores em verde indicam a soma de Cargas de NBO para cada fração (sem H), a seta vermelha indica o mecanismo de carga deslocalizada.

Figura B 3 - Análise NBO da deslocalização de carga na BDMC

Legenda: O valor em azul indicam ocupação de orbitais antiligantes (BD*) para cada ligação, valores em verde indicam a soma de Cargas de NBO para cada fração (sem H), a seta vermelha indica o mecanismo de carga deslocalizada.

Tabela B 7 - CARGA NBO da CUR – Método M02X-6-31++G(d,p).Valores em [e].								
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO		
C1	-0,1220	-0,0690	-0,0150	-0,1220	-0,1110	-0,1730		
C2	-0,2750	-0,2490	-0,3320	-0,2680	-0,2490	-0,2380		
C3	0,5000	0,4570	0,3960	0,4720	0,4360	0,4700		
C4	-0,4780	-0,3220	-0,0210	-0,4280	-0,4860	-0,5060		
C5	-0,5610	0,5340	0,3970	0,5430	0,3740	0,5690		
C6	-0,2870	-0,2240	-0,2910	-0,2420	-0,2170	-0,3820		
C7	-0,1260	-0,0930	-0,1030	-0,1630	-0,1200	-0,0850		
C8	-0,0980	-0,0990	-0,1370	-0,0970	-0,0990	-0,0790		
C9	-0,1800	-0,1340	-0,1760	-0,1800	-0,1950	-0,1890		
C10	-0,2420	-0,2410	-0,2400	-0,2400	-0,2440	-0,2420		
C11	0,3090	0,3640	0,3060	0,3080	0,2730	0,2910		
C12	0,2650	0,2860	0,2670	0,2650	0,2610	0,2620		
C13	-0,2400	-0,2290	-0,2440	-0,2380	-0,2640	-0,2490		
C14	-0,1180	-0,0760	-0,1130	-0,0110	-0,1010	-0,1920		
C15	-0,1770	-0,1350	-0,1760	-0,1970	-0,1970	-0,1790		
C16	-0,2410	-0,2340	-0,2400	-0,2070	-0,2420	-0,2750		
C17	0,3080	0,3710	0,3060	0,4080	0,2710	0,3450		
C18	0,2650	0,2940	0,2680	0,3350	0,2580	0,2540		
C19	-0,2380	-0,2300	-0,2420	-0,2990	0,2600	-0,2560		
O20	-0,6860	-0,6460	-0,6880	-0,6870	-0,7040	-0,6960		
021	-0,7190	-0,6980	-0,5150	-0,7200	-0,7270	-0,7280		
O22	-0,6850	-0,6580	-0,5170	-0,6840	-0,6450	-0,7270		
O23	-0,6860	-0,6320	-0,6880	-0,5170	-0,7050	-0,7700		
O24	-0,5810	-0,5930	-0,5820	-0,5810	-0,5900	-0,5860		
C39	-0,1990	-0,2040	-0,1990	-0,1990	-0,1970	-0,1980		
O43	-0,5810	-0,5580	-0,5810	-0,5160	-0,5910	-0,5430		
C44	-0,1990	-0,2050	-0,1990	-0,2060	-0,1970	-0,1950		

Tabela B 8 - CARGA NBO da DMC – Método M02X-6-31++G(d,p).Valores em [e].										
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO				
C1	-0,0940	-0,0820	0,0020	-0,1190	-0,1170	-0,1730				
C2	-0,2800	-0,2160	-0,3360	-0,2710	-0,2500	-0,2400				
C3	0,4970	0,4590	0,4180	0,4720	0,4320	0,4710				
C4	-0,4750	-0,3260	-0,1410	-0,4230	-0,5170	-0,5080				
C5	0,5670	0,5580	0,4160	0,5540	0,4670	0,5880				
C6	-0,2890	-0,2570	-0,3130	-0,2330	-0,2310	-0,3720				
C7	-0,1230	-0,0660	-0,0900	-0,1700	-0,1910	-0,1010				
C8	-0,1210	-0,0770	-0,1420	-0,0980	-0,1000	-0,0800				
C9	-0,1780	-0,1250	-0,1740	-0,1790	-0,1950	-0,1890				
C10	-0,2320	-0,2390	-0,2420	-0,2400	-0,2440	-0,2420				
C11	0,2710	0,3780	0,3110	0,3090	0,2730	0,2910				
C12	0,2450	0,2950	0,2680	0,2650	0,2610	0,2620				
C13	-0,1720	-0,2310	-0,2440	-0,2380	-0,2640	-0,2480				

C14	-0,1390	-0,1260	-0,1330	-0,0380	-0,0910	-0,2080
C15	-0,1510	-0,1310	-0,1500	-0,1930	-0,1650	-0,1710
C16	-0,2500	-0,2370	-0,2500	-0,2180	-0,2580	-0,2630
C17	0,3400	0,3940	0,3400	0,4820	0,3050	0,3690
C18	-0,2970	-0,2800	-0,2860	-0,2270	-0,2820	-0,3070
C19	-0,1360	-0,1040	-0,1460	-0,1750	-0,1720	-0,1430
O20	-0,2980	-0,6330	-0,6860	-0,6860	-0,7040	-0,6950
O21	-0,7290	-0,6980	-0,4790	-0,7400	-0,7330	-0,7490
O22	-0,6840	-0,6630	-0,5160	-0,6800	-0,6460	-0,7270
O23	-0,6850	-0,6490	-0,6850	-0,5420	-0,7020	-0,7960
O24	-0,5490	-0,5570	-0,5810	-0,5810	-0,5900	-0,5860
C39	-0,1510	-0,2050	-0,2000	-0,1990	-0,1970	-0,1980

Tabela B 9 - CARGA NBO da BDMC – Método M02X-6-31++G(d,p).Valores em [e].								
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO		
C1	-0,0080	-0,0140	-0,1050	0,0050	-0,1050	-0,1630		
C2	-0,3230	-0,3190	-0,2600	-0,3330	-0,2600	-0,2380		
C3	0,5000	0,4590	0,4310	0,5000	0,4310	0,4350		
C4	-0,4290	-0,1910	-0,4680	-0,3920	-0,4680	-0,4920		
C5	0,4350	0,5200	591,0000	0,4040	0,5910	0,5850		
C6	-0,2550	-0,2550	-0,3100	-0,1880	-0,3100	-0,4120		
C7	-0,1190	-0,0450	-0,1040	-0,1670	-0,1040	-0,0830		
C8	-0,1590	-0,1530	-0,1360	-0,1640	-0,1360	-0,1050		
C9	-0,1490	-0,1250	-0,1500	-0,1470	-0,1500	-0,1590		
C10	-0,2500	-0,2450	-0,2490	-0,2490	-0,2490	-0,2540		
C11	0,3400	0,3940	0,3400	0,3450	0,3400	0,3160		
C12	-0,2880	-0,2850	-0,2860	-0,2880	-0,2860	-0,2890		
C13	-0,1490	-0,1100	-0,1460	-0,1450	-0,1460	-0,1640		
C14	-0,1320	-0,1310	-0,1350	-0,0180	-0,1350	-0,2180		
C15	-0,1510	-0,1140	-0,1500	-0,2020	-0,1500	-0,1580		
C16	-0,2490	-0,2420	-0,2490	-0,1900	-0,2490	-0,2960		
C17	0,3390	0,4290	0,3400	0,4100	0,3400	0,4450		
C18	-0,2860	-0,2820	-0,2860	-0,1910	-0,2860	-0,3200		
C19	-0,1500	-0,0940	-0,1460	-0,1980	-0,1460	-0,1490		
O20	-0,6850	-0,6540	-0,6850	-0,6830	-0,6850	-0,6970		
O21	-0,7030	-0,6980	-0,4440	-0,7030	-0,4440	-0,7580		
022	-0,6830	-0,6470	-0,4240	-0,6700	-0,4240	-0,7550		
O23	-0,6850	-0,6320	-0,6850	-0,5310	-0,6850	-0,6990		

Tabela B 10 - Ordem de Ligação - NBO - CUR									
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO			
8C-1C	1,101	1,157	1,096	1,099	1,088	1,093			
1C=2C	1,768	1,651	1,780	1,769	1,792	1,783			
2C-3C	1,065	1,097	1,035	1,065	1,035	1,054			
3C-4C	1,182	1,150	1,127	1,229	1,214	1,255			

4C=5C	1,486	1,450	1,127	1,404	1,345	1,385
5C-6C	1,097	1,150	1,032	1,171	1,059	1,173
6C=7C	1,752	1,594	1,783	1,554	1,777	1,600
7C-14C	1,100	1,182	1,097	1,248	1,091	1,199
3C=22O	1,515	1,526	1,666	1,476	1,583	1,459
5C-21O	1,112	1,130	1,664	1,117	1,453	1,100
210-36H	0,595	0,590	-	0,577	-	0,602
11C-20O	1,033	1,081	1,026	1,029	1,007	1,018
20O-35H	0,731	0,721	0,733	0,732	0,738	0,735
17C-23O	1,032	1,099	1,026	1,637	1,006	1,387
230-37H	0,731	0,718	0,733	-	0,738	-
22O36H	1,574	1,578	-	1,538	-	1,578
12C-24O	0,972	0,999	0,969	0,970	0,959	0,965
024-39C	0,895	0,885	0,898	0,897	0,901	0,898
18C-43O	0,972	1,008	0,969	1,033	0,958	0,974
43043C	0,895	0,881	0,898	0,906	0,901	0,926

Tabela B 11 - Ordem de Ligação - NBO – DMC (em A)								
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO		
8C-1C	1,459	1,460	1,460	1,469	1,460	1,460		
1C=2C	1,339	1,337	1,337	1,334	1,337	1,337		
2C-3C	1,470	1,474	1,474	1,483	1,474	1,474		
3C-4C	1,436	1,438	1,438	1,402	1,438	1,438		
4C=5C	1,372	1,371	1,371	1,410	1,371	1,371		
5C-6C	1,451	1,455	1,455	1,410	1,455	1,455		
6C=7C	1,341	1,338	1,338	1,378	1,338	1,338		
7C-14C	1,459	1,460	1,460	1,404	1,460	1,460		
3C=22O	1,253	1,247	1,247	1,264	1,247	1,247		
5C-21O	1,325	1,320	1,320	1,326	1,320	1,320		
210-36H	1,007	1,009	-	1,018	-	1,009		
11C-20O	1,356	1,352	1,352	1,363	1,352	1,352		
20O-35H	0,964	0,966	0,966	0,965	0,966	0,966		
17C-23O	1,357	1,358	1,358	1,249	1,358	1,358		
230-37H	0,964	0,962	0,962		0,962			
22036H	1,578	1,567		1,532		1,567		
12C-24O	1,356	1,365	1,365	1,371	1,365	1,365		
024-39C	1,356	1,414	1,414	1,412	1,414	1,414		

Tabela B 12 - Ordem de Ligação - NBO - CUR (em A)								
	NEUTRA	CR	ENOL RADICAL	FENOL RADICAL	ENOLATO	FENOLATO		
8C-1C	1,099	1,189	1,099	1,105	1,081	1,087		
1C=2C	1,763	1,595	1,766	1,750	1,812	1,793		

2C-3C	1,069	1,154	1,058	1,076	1,005	1,046
3C-4C	1,179	1,114	1,313	1,152	1,262	1,345
4C=5C	1,503	1,289	1,288	1,514	1,262	1,274
5C-6C	1,105	1,234	1,051	1,120	1,002	1,271
6C=7C	1,750	1,468	1,771	1,629	1,816	1,463
7C-14C	1,100	1,266	1,099	1,199	1,083	1,318
3C=22O	1,520	1,509	1,390	1,538	1,569	1,396
5C-21O	1,136	1,154	1,347	1,124	1,568	1,106
21O-36H	0,597	0,567	-	0,604	-	0,584
11C-20O	1,018	1,068	1,018	1,022	0,987	0,997
20O-35H	0,757	0,743	0,756	0,756	0,766	0,763
17C-23O	1,017	1,105	1,018	1,608	0,987	1,551
230-37H	0,757	0,735	0,756	-	0,766	-
22036H	1,584	1,529	-	1,063	-	1,544

Apendice C - Análise do Potencial Eletrostático

Fonte: Danilo Melle de Proença, 2023

Tabela C 1 - Valores de Densidade de Spin CUR							
			ENOL				
		CR 1/2	RADICAL	FENOL RADICAL			
	νάςμο	0.464	0.766	0.107			
C4		0,464	0,785	0,103			
	AGUA	0,220	0,787	0,103			
	ÉIÉIA		0,707	0,104			
	VACUO	-0,111					
C5	ÁGUA	-0,114					
	ETETA						
	VÁCUO	0,144		0,258			
C6	ÁGUA	0,270		0,246			
	ETETA			0,248			
	VÁCUO			-0,174			
C7	ÁGUA	-0,108		-0,167			
	ETETA			-0,169			
	VÁCUO			0,381			
C14	ÁGUA	0,236		0,364			
	ETETA			0,368			
	VÁCUO			-0,114			
C15	ÁGUA						
	ETETA						
	VÁCUO						
C16	ÁGUA			0,176			
	ETETA			0,185			
	VÁCUO	0,175					
C17	ÁGUA	0,258					
	ETETA						

	VÁCUO			0,284
C18	ÁGUA	0,113		0,278
	ETETA			0,280
	VÁCUO			-0,166
C19	ÁGUA	-0,112		-0,166
	ETETA			-0,166
	VÁCUO		0,210	
O20	ÁGUA			
	ETETA			
	VÁCUO		0,193	
O 21	ÁGUA		0,161	
	ETETA		0,168	
	VÁCUO		0,193	
022	ÁGUA		0,161	
	ETETA		0,168	
	VÁCUO			0,282
O23	ÁGUA	0,108		0,269
	ETETA			0,272

Figura C 2 - Densidade de Spin da DMC e de suas formas radicalares e protonadas

Fonte: Danilo Melle de Proença, 2023

Tabela C 2 - Valores de Densidade de Spin DMC							
		CR	ENOL RADICAL	FENOL RADICAL			
		1/2	0/2	0/2			
	VÁCUO	0,108278					
C2	ÁGUA	0,256313					
	ETETA	0,275970					
	VÁCUO	0,458739	0,774488	0,139807			
C4	ÁGUA		0,780064	0,146827			
	ETETA		0,760301	0,144740			

1	VÁCUO			-0 101438
C5	ÁGUA			-0 106182
	FTFTA			-0 104739
	VÁCUO			0 290599
C6	ÁGUA			0.296002
	FTFTA			0 294282
	VÁCUO			0 188482
C7	ÁGUA			-0 187571
	FTFTA			-0 187902
	VÁCUO			0,101002
C8	ÁGUA	0.260062		
	FTFTA	0.251164		
	VÁCUO	0 146334		
C11	ÁGUA	0 273652		
•	FTFTA	0 270332		
	VÁCUO	0,210002		
C12	ÁGUA	0.162946		
•	ETETA	0.141561		
	VÁCUO	-,		
C13	ÁGUA	-0.140169		
015	ETETA	-0.129495		
	VÁCUO	,		0,432811
C14	ÁGUA			0,427319
	ETETA			0,429185
	VÁCUO			-0,142436
C15	ÁGUA			-0,133722
	ETETA			-0,136052
	VÁCUO			0,240759
C16	ÁGUA			0,221650
	ETETA			0,227003
	VÁCUO			0,274462
C18	ÁGUA			0,249057
	ETETA			0,256222
	VÁCUO			-0,181797
C19	ÁGUA			-0,168101
	ETETA			-0,172266
	VÁCUO			
O20	ÁGUA	0,120668		
	ETETA	0,117580		
	VÁCUO		0,195341	
O21	ÁGUA		0,164315	
	ETETA		0,173264	
022	VÁCUO		0,192563	

	ÁGUA	0,159503	
	ETETA	0,172908	
	VÁCUO		0,301433
O23	ÁGUA		0,277271
	ETETA		0,283540

Fonte: Danilo Melle de Proença, 2023

Tabela	Tabela C 3 - Valores de Densidade de Spin BDMC							
		05	ENOL					
		CR	RADICAL	FENOL RADICAL				
		1/2	0/2	0/2				
	VÁCUO	0,571	0,109	0,140				
C4	ÁGUA	0,406	0,108	0,147				
	ETETA	0,477	0,104					
	VÁCUO	-0,114		-0,102				
C5	ÁGUA	-0,168		-0,108				
	ETETA	-0,164						
	VÁCUO	0,124		0,291				
C6	ÁGUA	0,294		0,296				
	ETETA	0,262						
	VÁCUO			-0,188				
C7	ÁGUA			-0,187				
	ETETA							
	VÁCUO			0,426				
C14	ÁGUA			0,420				
	ETETA	0,151						
C15	VÁCUO			-0,141				

	ÁGUA			-0,131
	ETETA			
	VÁCUO			0,241
C16	ÁGUA			0,221
	ETETA			
	VÁCUO	0,119		
C17	ÁGUA	0,174		
	ETETA	0,163		
	VÁCUO	,		0,273
C18	ÁGUA			0,247
	ETETA			
	VÁCUO			-0,177
C19	ÁGUA			-0,162
	ETETA			
	VÁCUO			
O20	ÁGUA			
	ETETA			
	VÁCUO		0,479	
O21	ÁGUA		0,478	
	ETETA		0,476	
	VÁCUO		0,479	
022	ÁGUA		0,489	
	ETETA		0,476	
	VÁCUO			0,302
O23	ÁGUA			0,278
	ETETA			

Tał mé	oela D todo D	1 - Funçõ FT M06-2X	es termod /6–311++G	inâmicas c (d,p) nos c	la CUR e diferentes r	de suas fo neios sob	ormas radio T=298,15K	calares e e P=1atm.	protonadas (em Kcal/i	s, usando nol)
			ET→ ET-P1	<u>с , </u>	H	٩T	ET-PT à ET			
		neutra → CR	CR-→ ENOLRAD	CR→ FENOLRAD	CUR→ENOLRAD	CUR→FENOLRAD	CUR→ENOLATO	ENOLATO →ENOLRAD	CUR → FENOLATO	ENOLATO →FENOLRAD
f	vac	165,2843	247,8357	230,3068	413,1200	395,5911	343,2762	69,8437	328,7481	66,8430
Η	H2O	136,0818	272,3644	260,2755	408,4463	396,3573	291,7922	116,6541	287,9505	108,4067
7	EE	140,3112	269,3122	253,7079	409,6235	394,0192	301,8944	107,7290	295,6080	98,4111
+	vac	165,4857	245,2334	230,3238	410,7191	395,8095	341,6704	69,0487	329,2200	66,5895
Ū ⊲	H2O	134,8569	271,4213	261,0059	406,2782	395,8628	290,6206	115,6576	288,7494	107,1134
7	EE	141,2651	265,8157	252,5922	407,0808	393,8573	300,7461	106,3347	296,4426	97,4147
ŧ	vac	-0,0007	0,0087	-0,0001	0,0081	-0,0007	0,0054	0,0027	-0,0016	0,0009
∆S	H2O	0,0041	0,0032	-0,0024	0,0073	0,0017	0,0039	0,0033	-0,0027	0,0043
	EE	-0,0032	0,0117	0,0037	0,0085	0,0005	0,0039	0,0047	-0,0028	0,0033

Apendice D - Propriedades Termodinâmicas

Fonte: Danilo Melle de Proença, 2023

Tabela D 2 - Funções termodinâmicas da DMC e de suas formas radicalares e protonadas, usando método DFT M06-2X/6–311++G(d,p) nos diferentes meios sob T=298,15K e P=1atm. (em Kcal/mol)

		$ET \rightarrow ET - PT \qquad HAT \qquad ET - PT à ET$												
		neutra → CR	CR→ ENOLRAD	CR→ FENOLRAD	CUR→ENOLRAD	CUR→FENOLRAD	CUR→ENOLATO	ENOLATO →ENOLRAD	CUR → FENOLATO	ENOLATO →FENOLRAD				
J	vac	167,3789	245,5654	228,8742	412,9443	396,2531	343,4946	69,4497	324,5538	71,6993				
H	H2O	137,1699	271,4357	258,9665	408,6056	396,1364	291,3673	117,2383	286,3127	109,8237				
7	EE	134,7747	273,8403	261,3284	408,6151	396,1031	301,4445	107,1706	292,3971	103,7061				
Ļ	vac	167,5282	244,9849	228,8472	412,5132	396,3755	342,5345	69,9787	325,5497	70,8258				
Q	H2O	138,8391	268,8491	257,1818	407,6882	396,0209	291,5901	116,0981	286,7012	109,3198				
7	EE	134,8519	275,0841	261,1910	409,9360	396,0429	302,4448	107,4912	295,1368	100,9061				
Ţ	vac	-0,0005	0,0019	0,0001	0,0014	-0,0004	0,0032	-0,0018	-0,0033	0,0029				
∆Sŗ	H2O	-0,0056	0,0087	0,0060	0,0031	0,0004	-0,0007	0,0038	-0,0013	0,0017				
	EE	-0,0003	-0,0042	0,0005	-0,0044	0,0002	-0,0034	-0,0011	-0,0092	0,0094				

Tab	Tabela D 3 - Funções termodinâmicas da BDMC e de suas formas radicalares e protonadas, usando												
método DFT M06-2X/6–311++G(d,p) nos diferentes meios sob T=298,15K e P=1atm. (em Kcal/mol)													
			ET→ ET-P]	Г	H	AT		ET-PT à ET					
		neutra → CR	CR→ ENOLRAD	CR→ FENOLRAD	CUR→ENOLRAD	CUR→FENOLRAD	CUR→ENOLATO	ENOLATO →ENOLRAD	CUR → FENOLATO	ENOLATO →FENOLRAD			
f	vac	159,3348	259,6649	235,1556	418,9997	394,4904	343,2586	75,7411	324,4446	70,0458			
Ϋ́Η	H2O	139,1648	267,6876	257,0105	406,8524	396,1753	291,8141	115,0383	286,2958	109,8795			
7	EE	143,9702	274,8418	149,1014	418,8121	293,0716	299,6856	119,1265	293,0716	0,0000			
f	vac	161,5487	259,0813	236,6428	420,6300	398,1915	340,4832	80,1468	324,9435	73,2480			
Q	H2O	138,3691	270,6055	257,5314	408,9746	395,9005	290,4813	118,4933	286,9528	108,9477			
7	EE	144,6015	277,5113	149,3235	422,1128	293,9251	304,0675	118,0453	293,9232	0,0019			
f	vac	-0,0074	0,0020	-0,0050	-0,0055	-0,0124	0,0093	-0,0148	-0,0017	-0,0107			
ΔS	H2O	0,0027	-0,0098	-0,0017	-0,0071	0,0009	0,0045	-0,0116	-0,0022	0,0031			
	FF	-0.0021	-0.0090	-0,0007	-0,0111	-0,0029	-0,0147	0,0036	-0,0029	0,0000			

Tabela E 1 - Valores momento para a estrutura CUR e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).											
		NEUTRA	CR	ENOL- RAD	ENOLATO	FENOL- RAD	FENOLATO				
	vac	2,0562	7,4772	0,5225	3,7304	6,1881	20,5981				
MOMENTO DIPOLO u (D)	H2O	2,2324	23,4025	1,6253	6,6168	7,9956	31,5732				
	EE	2.2276	20.8554	1.0841	5.7555	7.7862	28.4821				

Apendice E - Estudos de orbitais moleculares de fronteira (FMO)

Fonte: Danilo Melle de Proença, 2023

Tabela E 2 - Valores momento para a estrutura DMC e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).											
NEUTRA CR RAD ENOLATO RAD FENOL											
	vac	0,8554	1,7931	2,0671	6,4090	6,9239	24,3863				
	H2O	1,0974	21,1739	3,5594	9,5531	9,0142	35,0302				
	EE	1,0222	21,1739	3,2977	8,6512	8,5274	32,3505				

Fonte: Danilo Melle de Proença, 2023

Tabela E 3 - Valores momento para a estrutura BDMC e de suas formas radicalares e protonadas,										
utilizando metodologia e M062X/6-311++G(2d,p).										
			ENOL-		FENOL-					

				LIVE		LINOL	
		NEUTRA	CR	RAD	ENOLATO	RAD	FENOLATO
	vac	0,9342	6,2403	1,0286	7,6571	7,0375	21,1744
MOMENTO DIPOLO U (D)	H2O	1,7051	17,6489	5,4677	11,7029	9,5196	31,8821
2 0.10 µ (2)	EE	1,4668	15,1183	1,5971	10,7834	29,1526	29,1526

Fonte: Danilo Melle de Proença, 2023

Tabela DFT M	Tabela E 4 - Parâmetros químicos de reatividade quântica para CUR usando método DFT M06-2X/6–311++G(d,p) no vácuo											
	NEUTRA	CR	ENOL-RAD	ENOLATO	FENOL-RAD	FENOLATO						
l vac	6,863	9,349	7,163	2,792	6,717	2,622						
Avac	1,644	7,419	1,448	-1,402	1,841	-1,065						
µvac	-4,253	-8,384	-4,305	-0,695	-4,279	-0,779						
хvас	-4,253	-8,384	-4,305	-0,695	-4,279	-0,779						
ηvac	2,610	0,965	2,858	2,097	2,438	1,843						
Svac	0,766	2,072	0,700	0,954	0,820	1,085						
ωvac	3,466	36,408	3,243	0,115	3,754	0,165						
gap	5,2194	1,9306	5,7155	4,1938	4,8763	3,6866						
ΔN	2,1560	7,9683	1,9780	1,8348	2,3130	2,1100						

DFT M	DFT M06-2X/6–311++G(d,p) no vácuo											
	NEUTRA	CR	ENOL-RAD	ENOLATO	FENOL-RAD	FENOLATO						
l vac	6,954	10,147	7,201	2,778	7,336	2,764						
Avac	1,647	4,958	3,106	-1,401	3,472	-1,052						
µvac	-4,301	-7,552	-5,154	-0,689	-5,404	-0,856						
χνас	-4,301	-7,552	-5,154	-0,689	-5,404	-0,856						
ηvac	2,654	2,594	2,048	2,089	1,932	1,908						
Svac	0,754	0,771	0,977	0,957	1,035	1,048						
ωvac	3,485	10,992	6,485	0,113	7,559	0,192						
gap	5,307	5,189	4,096	4,178	3,863	3,816						
ΔΝ	2.12942	2.804625	2.967516	1.840122685	3.210634	2.058766586						

Tabela DFT M	Tabela E 6 - Parâmetros químicos de reatividade quântica para BDMC usando método DFT M06-2X/6–311++G(d,p) no vácuo											
	NEUTRA	CR	ENOL-RAD	ENOLATO	FENOL-RAD	FENOLATO						
l vac	7,034	10,061	7,066	2,767	7,090	2,757						
Avac	1,658	7,529	1,628	1,403	3,480	1,025						
µvac	-4,346	-8,795	-4,347	-2,085	-5,285	-1,891						
хvас	-4,346	-8,795	-4,347	-2,085	-5,285	-1,891						
ηvac	2,688	1,266	2,719	0,682	1,805	0,866						
Svac	0,744	1,579	0,736	2,932	1,108	2,310						
ωvac	3,513	30,542	3,475	3,188	7,737	2,065						
gap	5,3761	2,5326	5,4374	1,3641	3,6099	1,7315						
ΔN	2,110	6,237	2,087	6,660	3,403	5,135						

Figura E 1 - Tabela pKa CUR M06-2X/6-311++(2d,p)

Fonte: Danilo Melle de Proença, 2023

Figura E 2 - Tabela pKa DMC M06-2X/6-311++(2d,p)

Fonte: Danilo Melle de Proença, 2023

Figura E 3 - Tabela pKa CUR M06-2X/6-311++(2d,p)

Fonte: Danilo Melle de Proença, 2023

Tabela E 7 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura CUR neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).

F 1 1 1 1 1 1 1 1 1 1				ENOL-		FENOL-	
		NEUTRA	CR	RAD	ENOLATO	RAD	FENOLATO
	vac	-1263,464	1263,199	-1262,791	-1262,902	-1262,819	-1262,925
E0 (AU)	H2O	-1263,482	- 1263,266	-1262,818	-1263,004	-1262,838	-1263,009
	EE	-1263,478	- 1263,253	-1262,812	-1262,983	-1262,837	-1262,992
	vac	-46,4316	-46,4218	-46,4068	-46,4109	-46,4079	-46,4118
IOTAL ENERGIA (e.V)	H2O	-46,4322	-46,4243	-46,4078	-46,4147	-46,4085	-46,4149
. ,	EE	-46,4321	-46,4238	-46,4076	-46,4139	-46,4085	-46,4142
	vac	-1,6436			1,4022		1,0645
LUMO (ev)	H2O	-1,9456			-1,0697		-1,6710
	EE	-1,8700			-0,4993		-1,2150
	vac	-6,8630			-2,7916		-2,6221
HOMO (ev)	H2O	-7,0105			-6,4360		-5,7168
	EE	-6,9705			-5,8113		-5,1672
	vac		-7,4186	-1,4476		-1,8406	
SOMOS β (ev)	H2O		-4,6667	-1,7481		-2,1437	
	EE		-5,1560	-1,6618		-1,9513	
	vac		-9,3493	-7,1631		-6,7168	
SOMOS α (ev)	H2O		-7,3468	-7,2325		-7,0216	
	EE		-7,5773	-7,2124		-6,8284	
BAND GAP	vac	5,2194	1,9306	5,7155	4,1938	4,8763	3,6866
BAND GAP (HOMO-LUMO) ou (SOMO α-SOMO β)	H2O	5,0648	2,6800	5,4844	5,3663	4,8779	4,0458
ev	EE	5,1005	2,4213	5,5506	5,3119	4,8771	3,9522
MOMENTO	vac	2,0562	7,4772	0,5225	3,7304	6,1881	20,5981
DIPOLO µ (D)	H2O	2,2324	23,4025	1,6253	6,6168	7,9956	31,5732
	EE	2,2276	20,8554	1,0841	5,7555	7,7862	28,4821
Potencial de	vac	6,863	9,349	7,163	2,792	6,717	2,622
ionização I =-	H2O	7,010	7,347	7,232	6,436	7,022	5,717
	EE	6,970	7,577	7,212	5,811	6,828	5,167
	vac	1,644	7,419	1,448	-1,402	1,841	-1,065
A=-ELUMO	H2O	1,946	4,667	1,748	1,070	2,144	1,671
	EE	1,870	5,156	1,662	0,499	1,951	1,215
	vac	-4,253	-8,384	-4,305	-0,695	-4,279	-0,779
Dureza μ = -(I+A)/2	H2O	-4,478	-6,007	-4,490	-3,753	-4,583	-3,694
	EE	-4,420	-6,367	-4,437	-3,155	-4,390	-3,191
Eletronegatividade	vac	-4,253	-8,384	-4,305	-0,695	-4,279	-0,779
χ= (EHOMO +	H2O	-4,478	-6,007	-4,490	-3,753	-4,583	-3,694
	EE	-4,420	-6,367	-4,437	-3,155	-4,390	-3,191
	vac	2,610	0,965	2,858	2,097	2,438	1,843

η = - (EHOMO-	H2O	2,532	1,340	2,742	2,683	2,439	2,023
ELUMO) /2	EE	2,550	1,211	2,775	2,656	2,439	1,976
	vac	0,766	2,072	0,700	0,954	0,820	1,085
Maciez S= 2 η-1	H2O	0,790	1,493	0,729	0,745	0,820	0,989
	EE	0,784	1,652	0,721	0,753	0,820	1,012
	vac	3,466	36,408	3,243	0,115	3,754	0,165
ω = μ2/2η	H2O	3,959	13,463	3,676	2,624	4,305	3,373
	EE	3,831	16,741	3,547	1,874	3,951	2,577
	vac	2,156	7,968	1,978	1,835	2,313	2,110
ΔN = (χFe – χinh)/[2(ηFe + ninh)]	H2O	2,266	4,853	2,095	2,004	2,375	2,643
<u>, [-(.]. 5 ()]</u>	EE	2,239	5,521	2,061	1,912	2,335	2,579

Tabela E 8 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura DMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).

		NEUTRA	CR	ENOL- RAD	ENOLATO	FENOL- RAD	FENOLATO
	vac	-1148,9459	-1148,6779	-1148,2735	-1148,3844	-1148,3007	-1148,4146
TOTAL ENERGIA E0 (AU)	H2O	-1148,9653	-1148,7459	-1148,3014	-1148,4868	-1148,3206	-1148,4949
	EE	-1148,9605	-1148,7459	-1148,2940	-1148,4658	-1148,3158	-1148,4794
	vac	-42,2231	-42,2132	-42,1984	-42,2024	-42,1994	-42,2036
TOTAL ENERGIA (e.V)	H2O	-42,2238	-42,2157	-42,1994	-42,2062	-42,2001	-42,2065
	EE	-42,2236	-42,2157	-42,1991	-42,2054	-42,1999	-42,2059
	vac	-1,6474			1,4006		1,0520
LUMO (ev)	H2O	-1,9369			-1,0604		-1,6678
	EE	-1,8585			-0,4901		-1,2215
	vac	-6,9544			-2,7777		-2,7639
HOMO (ev)	H2O	-7,0815			-6,4480		-5,8945
	EE	-7,0442			-5,8156		-5,3484
	vac		-4,9579	-3,1059		-3,4724	
SOMOS β (ev)	H2O		-2,4746	-3,3301		-3,5848	
	EE		-2,8760	-3,3369		-3,5568	
	vac		-10,1466	-7,2015		-7,3359	
SOMOS α (ev)	H2O		-7,3699	-7,2926		-7,2815	
	EE		-7,6401	-7,2643		-7,2807	
BAND GAP	vac	5,3070	5,1887	4,0956	4,1783	3,8635	3,8158
(HOMO-LUMO) ou (SOMO α-SOMO β)	H2O	5,1446	4,8953	3,9625	5,3876	3,6967	4,2267
ev	EE	5,1857	4,7642	3,9274	5,3255	3,7239	4,1269
MONENTO	vac	0,8554	1,7931	2,0671	6,4090	6,9239	24,3863
DIPOLO µ (D)	H2O	1,0974	21,1739	3,5594	9,5531	9,0142	35,0302
	EE	1,0222	21,1739	3,2977	8,6512	8,5274	32,3505
	vac	6,954	10,147	7,201	2,778	7,336	2,764

Potencial de ionização I =-	H2O	7 081	7 370	7 293	6 4 4 8	7 281	5 895
		7,001	7,010	7,200	5.946	7,201	5.249
	EE	7,044	7,640	7,204	5,816	7,281	5,348
Eletroafinidade A=-ELUMO	vac	1,647	4,958	3,106	-1,401	3,472	-1,052
	H2O	1,937	2,475	3,330	1,060	3,585	1,668
	EE	1,859	2,876	3,337	0,490	3,557	1,222
Dureza μ = -(I+A)/2	vac	-4,301	-7,552	-5,154	-0,689	-5,404	-0,856
	H2O	-4,509	-4,922	-5,311	-3,754	-5,433	-3,781
	EE	-4,451	-5,258	-5,301	-3,153	-5,419	-3,285
Eletronegatividade χ= (EHOMO + ELUMO)/2	vac	-4,301	-7,552	-5,154	-0,689	-5,404	-0,856
	H2O	-4,509	-4,922	-5,311	-3,754	-5,433	-3,781
	EE	-4,451	-5,258	-5,301	-3,153	-5,419	-3,285
η = - (ΕΗΟΜΟ- ELUMO) /2	vac	2,654	2,594	2,048	2,089	1,932	1,908
	H2O	2,572	2,448	1,981	2,694	1,848	2,113
	EE	2,593	2,382	1,964	2,663	1,862	2,063
Maciez S= 2 η-1	vac	0,754	0,771	0,977	0,957	1,035	1,048
	H2O	0,778	0,817	1,009	0,742	1,082	0,946
	EE	0,771	0,840	1,018	0,751	1,074	0,969
ω = μ2/2η	vac	3,485	10,992	6,485	0,113	7,559	0,192
	H2O	3,952	4,949	7,119	2,616	7,985	3,383
	EE	3,821	5,803	7,154	1,867	7,885	2,615
ΔN = (χFe – χinh)/[2(ηFe + ηinh)]	vac	2,129	2,805	2,968	1,840	3,211	2,059
	H2O	2,237	2,435	3,107	1,996	3,363	2,551
	EE	2,208	2,573	3,132	1,906	3,335	2,492

Tabela E 9 - Valores energéticos em e.V dos orbitais de fronteira HOMO, LUMO, SOMOS e dos parâmetros quânticos calculados para a estrutura BDMC neutra e de suas formas radicalares e protonadas, utilizando metodologia e M062X/6-311++G(2d,p).

				ENOL-		FENOL-	
		NEUTRA	CR	RAD	ENOLATO	RAD	FENOLATO
TOTAL ENERGIA E0 (AU)	vac	-1034,428	-1034,157	-1033,742	-1033,866	-1033,782	-1033,896
	H2O	-1034,448	-1034,226	-1033,783	-1033,969	-1033,803	-1033,977
	EE	-1034,443	-1034,213	-1033,760	-1033,948	-1033,962	-1033,962
TOTAL ENERGIA (e.V)	vac	-38,015	-38,005	-37,989	-37,994	-37,991	-37,995
	H2O	-38,015	-38,007	-37,991	-37,998	-37,992	-37,998
	EE	-38,015	-38,007	-37,990	-37,997	-37,997	-37,997
LUMO (ev)	vac	-1,6580			-1,4033		-1,0251
	H2O	-1,9306			-1,0547		-1,6634
	EE	-1,8550			-0,5023		-1,2199
HOMO (ev)	vac	-7,0341			-2,7674		-2,7565
	H2O	-7,1405			-6,4597		-5,8945
	EE	-7,1090			-5,8129		-5,3468
SOMOS β (ev)	vac		-7,5286	-1,6283		-3,4798	

1	i i	1	1	1	1	1	1
	H2O		-4,8042	-3,3606		-3,5829	
	EE		-5,2616	-1,8422		-1,2199	
SOMOS α (ev)	vac		-10,0611	-7,0657		-7,0896	
	H2O		-7,5985	-7,4230		-7,1171	
	EE		-7,9182	-7,1596		-3,7141	
BAND GAP	vac	5,3761	2,5326	5,4374	1,3641	3,6099	1,7315
(HOMO-LUMO) ou (SOMO α -SOMO β)	H2O	5,2099	2,7943	4,0624	5,4050	3,5342	4,2311
ev	EE	5,2540	2,6566	5,3174	5,3106	2,4942	4,1269
	vac	0,934	6,240	1,029	7,657	7,038	21,174
DIPOLO µ (D)	H2O	1,705	17,649	5,468	11,703	9,520	31,882
,	EE	1,467	15,118	1,597	10,783	29,153	29,153
Potencial de	vac	7,034	10,061	7,066	2,767	7,090	2,757
ionização I =-	H2O	7,141	7,598	7,423	6,460	7,117	5,895
ЕНОМО	EE	7,109	7,918	7,160	5,813	3,714	5,347
Eletroafinidade A=-ELUMO	vac	1,658	7,529	1,628	1,403	3,480	1,025
	H2O	1,931	4,804	3,361	1,055	3,583	1,663
	EE	1,855	5,262	1,842	0,502	1,220	1,220
Dureza μ = -(I+A)/2	vac	-4,346	-8,795	-4,347	-2,085	-5,285	-1,891
	H2O	-4,536	-6,201	-5,392	-3,757	-5,350	-3,779
	EE	-4,482	-6,590	-4,501	-3,158	-2,467	-3,283
Fletronegatividade	vac	-4,346	-8,795	-4,347	-2,085	-5,285	-1,891
χ= (EHOMO +	H2O	-4,536	-6,201	-5,392	-3,757	-5,350	-3,779
ELUMO)/2	EE	-4,482	-6,590	-4,501	-3,158	-2,467	-3,283
	vac	2,688	1,266	2,719	0,682	1,805	0,866
η = - (EHOMO- ELUMO) /2	H2O	2,605	1,397	2,031	2,702	1,767	2,116
	EE	2,627	1,328	2,659	2,655	1,247	2,063
Maciez S= 2 η-1	vac	0,744	1,579	0,736	2,932	1,108	2,310
	H2O	0,768	1,431	0,985	0,740	1,132	0,945
	EE	0,761	1,506	0,752	0,753	1,604	0,969
ω = μ2/2η	vac	3,513	30,542	3,475	3,188	7,737	2,065
	H2O	3,949	13,762	7,156	2,612	8,099	3,375
	EE	3,823	16,347	3,810	1,877	2,440	2,612
ΔN = (χFe – χinh)/[2(ηFe + ηinh)]	vac	2,110	6,237	2,087	6,660	3,403	5,135
	H2O	2,214	4,724	3,050	1,990	3,494	2,548
	EE	2,185	5,115	2,163	1,913	3,796	2,492

Figura E 4 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR no vácuo (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Figura E 6 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da CUR em Etanoato de etila (metodologia m062X/6-311++G(2d,p)

Figura E 7 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da DMC no Vácuo (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

Figura E 8 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da DMC na Água (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

Figura E 10 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC no Vácuo (metodologia m062X/6-311++G(2d,p)

Figura E 11 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC na Água (metodologia m062X/6-311++G(2d,p)

Figura E 12 - Diagrama de energia dos orbitais moleculares de fronteira (FMO) da BDMC em Etanoato de etila (metodologia m062X/6-311++G(2d,p)

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Apendice F - UV-VIS e IR

Fonte: Danilo Melle de Proença, 2023

Figura F 2 - UV-VIS DMC

Fonte: Danilo Melle de Proença, 2023

Figura F 4 - Spectro IR - CUR neutra no vácuo

Figura F 5 - Spectro IR - CUR-Enolato no vácuo

Fonte: Danilo Melle de Proença, 2023

Figura F 6 - Spectro IR - CUR-fenolato no vácuo

Fonte: Danilo Melle de Proença, 2023

Figura F 7 - Spectro IR - DMC neutra no vácuo

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Figura F 11 - Spectro IR - BDMC-Enolato no vácuo
--

Fonte: Danilo Melle de Proença, 2023

Fonte: Danilo Melle de Proença, 2023

Tabela F 1 - Frequência CUR						
· · ·	Fre	equência Teó	Valores da Literatura			
Grupo de Contribuição	M06	<u>2X/6-311++G</u>				
	CUR - CUR - CUR-					
	NEUTRA	ENOLATO	FENOLATO			
O–H stretching of phenol group	3839	3853	3852	3768 ^E ; 3508 ^C ; 3200-3500 ^D		
C–H stretching	3234	3166	3227	3182 ^{E;B}		
C–H stretching	3219	3210	3216	3175 ^{E;B}		
C–H stretching	3206	3166	3189	3109 ^{E;B}		
C–H stretch of OCH ₃	3192	3162	3159	2945 ^C , 3058 ^E		
C–H stretching	3169	3166	3157	3011 ^{E; B}		
C–H stretching	3159	3038		3001 ^{E; B}		
Asymmetric CH strech of CH ₃	3119	3038	3075	2972 ^C , 3071 ^E		
C-H strech of OCH ₃	2961			2945 ^C , 3058 ^E		
C=O strech	1732	1746	1703	1626 ^C , 1745-1712 ^D , 1674 ^E		
C–O–H bending	1732		1774	1712 ^D , 1508 ^E		
C _{sp2} =C _{sp2} (v.F) streching	1685	1676	1677	1628 ^D		
Aromatic C=C stretching	1685			1658 ^E		
C-O bending vibracion streching	1680			1278 ^A , 1277 ^D , 1328 ^E		
C=O stretching	1522	1520	1625	1508 ^C 1512 ^D		
C=Car stretching	1362	1346	1332	1427 ^D , 1485 ^E		
In plane bending of aromatic	1017	1097	1096	1150 ^C , 1188 ^E		
C=O streching	971	967	849	959 ^C , 986 ^E		
bending vibrations of the C-H						
bond of alkene groups	754	789	737	719-962 ^D , 745 ^E		
(RCH=CH ₂)						
Legenda dos valores da literatura:						
A - (SUBHAN; ISLAM; CHOWDHURY, 2012)						
B - (KOLEV et al. 2005)						

C - (MOHAN et al., 2003) D - (ISMAIL et al., 2012) E - (GUPTA et al., 2015)

Fonte: Danilo Melle de Proença, 2023

Tabela F 2 - Frequência DMC					
Grupo de Contribuição	Frequência Teórico M062X/6-311++G (2d,p)			Valores da	Valores da
	DMC - NEUTRA	DMC - ENOLATO	DMC- FENOLATO	Literatura BDMC ^F	CUR
O–H stretching of phenol group	3860	3853	3850	3493- 2890	3768 ^E ; 3508 ^C ; 3200-3500 ^D
C–H stretching	3234	3206	3228		3182 ^{E;B}

C–H stretch of OCH ₃	3185	3157	3112		2945 ^C , 3058 ^E
C=O strech	1611	1684	1628	1619	1626 ^C , 1745- 1712 ^D , 1674 ^E
C–O–H bending	1560	1564	1572	1562	1712 ^D , 1508 ^E
C _{sp2} =C _{sp2} (v.F) streching	1628	1615	1628		1628 ^D
Aromatic C=C stretching	1653	1662	1676	1598	1658 ^E
C-O bending vibracion streching	1234	1258	1276	1234	1278 ^A , 1277 ^D , 1328 ^E
C=O stretching	1509	1514	1523	1506- 1510	1508 ^C 1512 ^D
C=Car stretching	1488	1482	1473	1431	1427 ^D , 1485 ^E
In plane bending of aromatic	1199	1258	1261	1168- 1194	1150 ^C , 1188 ^E
C=O streching	991	946	966	954	959 ^C , 986 ^E
bending vibrations of the C-H bond of alkene groups (RCH=CH ₂)	748	748	751	706-933	719-962 ^D , 745 ^E
Legenda dos valores da literatura: A - (SUBHAN; ISLAM; CHOWDHURY, 2012) B - (KOLEV et al., 2005) C - (MOHAN et al., 2012) D - (ISMAIL et al., 2014) E - (GUPTA et al., 2015) F- (CID, 2021)					

Fonte: Danilo Melle de Proença, 2023

Tabela F 3 - Frequência BDMC						
	Fi	requência Te	órico	Valores	Valores da	
Grupo de Contribuição	M062X/6-311++G (2d,p)			da	l iteratura	
	BDMC -	BDMC -	BDMC-	Literatura	CUR	
	NEUTRA	ENOLATO	FENOLATO	BDMC		
O–H stretching of phenol				3493-	3768 [⊧] ; 3508 [€] ;	
group	3851	3877	3877	2890	3200-3500 ^D	
C–H stretching	3204	3184	3193		3182 ^{E;B}	
C–H stretch of OCH ₃	3204	3184	3193		2945 ^C , 3058 ^E	
C-H strech of OCH ₃	2948		2777		2945 ^C , 3058 ^E	
C-O strash		1706		1619	1626 ^C , 1745-	
C=O silech		1706			1712 ^D , 1674 ^E	
C–O–H bending	1629	1635	1679	1562	1712 ^D , 1508 ^E	
C _{sp2} =C _{sp2} (v.F) streching			1604		1628 ^D	
Aromatic C=C stretching	1565			1598	1658 ^E	
C-O bending vibracion				1234	1278 ^A , 1277 ^D ,	
streching	1313	1308	1214		1328 ^E	
C. O stratabing				1506-	1500C 1510D	
C=O stretching		1563	1589	1510	1508° 1512°	
C=Car stretching	1371	1366	1299	1431	1427 ^D , 1485 ^E	
				1168-	44500 44005	
In plane bending of aromatic				1194	1150°, 1188-	
C=O streching	1160	1193	1114	954	959 ^C , 986 ^E	
bending vibrations of the C-H				706-933		
bond of alkene groups					719-962 ^D , 745 ^E	
(RCH=CH ₂)	990-832	978-526	995-648			
Legenda dos valores da literatu	ıra::					
A - (SUBHAN: ISLAM: CHOWDHURY, 2012)						
B - (KOLEV et al., 2005)						
C - (MOHAN et al., 2012)						
D - (ISMAIL et al., 2014)						
E - (GUPTA et al., 2015)						
F- (CID, 2021)						

Fonte: Danilo Melle de Proença, 2023