Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação em Ciências da Saúde
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/123456789/1343
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSILVA, Isabela Rios da-
dc.creator.ID08946968664pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8719529622576108pt_BR
dc.contributor.advisor1RODRIGUES, Denise Bertulucci Rocha-
dc.contributor.advisor1ID10676897886pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5953745136489913pt_BR
dc.contributor.advisor-co1RODRIGUES JUNIOR, Virmondes-
dc.contributor.advisor-co1ID45813493620pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8909243237236516pt_BR
dc.date.accessioned2022-07-25T17:28:53Z-
dc.date.available2017-02-10-
dc.date.available2022-07-25T17:28:53Z-
dc.date.issued2017-02-10-
dc.identifier.citationSILVA, Isabela Rios da. Avaliação morfométrica do colágeno total, tipo I e tipo III e análise da expressão in situ de citocinas em queloides. 2017. 69f . Dissertação (Mestrado e Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .pt_BR
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/123456789/1343-
dc.description.resumoOs queloides são resultantes de alterações fisiológicas no processo cicatricial. São caracterizados pelo crescimento além das bordas da lesão inicial e pela não regressão espontânea. Seus sinais e sintomas incluem dor, prurido, rubor e enrijecimento local e pode causar desconfortos psicológicos, devido à desfiguração estética muito comum nestas lesões. Caracteriza-se pela deposição excessiva de colágeno e diversas citocinas podem estar contribuindo na fisiopatologia. O objetivo deste estudo foi avaliar através de morfometria as fibras colágenas e analisar in situ a expressão das citocinas em lesões de queloides e compará-las ao grupo controle. Um total de 33 pacientes foram acompanhados no ambulatório da cirurgia plástica, tratados com triancinolona 20mg/ml intralesional e encaminhados para excisão da lesão. Os fragmentos foram armazenados em RNA later e em formol tamponado. O grupo controle constituiu-se de 40 fragmentos de cicatriz normal retiradas, em sua maioria, de pacientes secundíparas ou multíparas durante cesariana. Para a captura de imagens e quantificação das fibras colágenas foram utilizados o sistema Leica Qwin Plus® e Image J®. Os resultados demonstraram uma predominância do sexo feminino (60,60%), etnia não branca (60,60) e descendência negra direta (66,66%). Os queloides apresentaram aumento significativo no colágeno total e tipo III (p<0,0001; p=0,0001). Significativamente, a expressão de mRNA para o TGF-β nos queloides apresentou-se aumentada, a de IFN-γ, IFN-γR1 e IL-10 foram menores, sem diferença estatística para o IFN-γR1 e o TNF-α não apresentou diferença significativa (p<0,001; p=0,009; p=0,246; p=0,037; p=0,911) comparados ao grupo controle. Correlações entre colágeno tipo III a expressão de mRNA do TGF-β foram positivas e significativas (p=0,001, z= 3,210), do IFN-γ, IFN-γR1 e IL-10 negativa e significativa (p=0,015, z=-2,425; p=0,021, z=-2,303; p=0,014, z=-2,445) e do TNF-α sem diferença estatística (p=0,555, z=0,590). Dessa forma, com estes resultados, pode-se sugerir que as citocinas pró-infamatórias e anti-inflamatórias podem estar auxiliando diretamente na patogênese do queloide principalmente ao induzir uma cicatrização mais imatura, com síntese excessiva de colágeno e com contração cicatricial ineficiente. Além disso, o TGF-β parece ser o maior fator de indução da ativação e proliferação dos fibroblastos, sendo um alvo importante de estudos para elucidar a fisiopatologia do queloide.pt_BR
dc.description.abstractKeloids are the result of physiological changes in the healing process. Characterized by growth beyond the borders of the initial lesion and by non-spontaneous regression. Its signs and symptoms include pain, itching, flushing and local stiffness and can cause psychological discomforts due to the aesthetic disfigurement very common in these lesions. It is characterized by the excessive deposition of collagen and several cytokines may be contributing to the pathophysiology. The objective of this study was to evaluate the collagen fibers, analyze in situ expression of cytokines in keloid lesions, and compare to the control group. 33 patients were followed up at the plastic surgery outpatient, treated with triamcinolone 20 mg/ml and referred for excision of the lesion. The fragments were stored in later RNA and buffered formalin. The control group consisted of 40 normal scar fragments taken from secondary or multiparous patients during cesarean section. The Leica Qwin Plus® and Image J® system were used for image capture and quantification of the collagen fibers. The results showed a predominance of women (60.60%), non-white (60.60) and direct black ancestry (66.66%). Keloid showed a significant increase in total and type III collagen (p <0.0001, p = 0.0001). Significantly, the expression of mRNA for TGF-β in keloid was increased, the expression of IFN-γ, IFN-γR1 and IL-10 were lower, and with no statistical difference for IFN-γR1 and TNF-α showed no statistical difference (p<0.001, p=0.009, p=0.246, p=0.037; p=0.911) compared to the control group. Correlations between collagen type III and TGF-β mRNA expression were positive and significant (p=0.001, z=3.210), and IFN-γ, IFN-γR1 and IL-10, were negative and significant (p=0.015, z=-2.425, p=0.021, z=-2.303, p=0.014, z=-2.445) and TNF-α with no statistical difference (p=0.555, z=0.590). Thus, with these results, it can be suggested that pro-inflammatory and anti-inflammatory cytokines may be directly assisting in the pathogenesis of the keloid mainly by inducing a more immature healing, with excessive collagen synthesis and with inefficient wound contraction. In addition, TGF-β appears to be the major induction factor for fibroblast activation and proliferation, and is an important target for studies to elucidate the keloid pathophysiology.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Ensino e Pesquisa de Uberaba - FUNEPUpt_BR
dc.description.sponsorshipFundação de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIGpt_BR
dc.description.sponsorshipUniversidade Federal do Triângulo Mineiro - UFTMpt_BR
dc.formatapplication/pdf*
dc.languageporpt_BR
dc.publisherUniversidade Federal do Triângulo Mineiropt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúdept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.initialsUFTMpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências da Saúdept_BR
dc.relation.referencesABBAS, A. K.; LICHTMAN, A. H. H.; PILLAI, S. Imunologia Celular e Molecular. Elsevier Health Sciences Brazil, 2012. ISBN 9788535259728. ABERGEL, R. P. et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol, v. 84, n. 5, p. 384-90, May 1985. ADDISON, T. On the Keloid of Alibert, and on True Keloid. Med Chir Trans, v. 37, p. 27-47, 1854. AGREN, M. S. et al. Tumor necrosis factor-alpha-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol, v. 94, n. 1, p. 12-21, Jan 2015. ALJADA, A. et al. Hydrocortisone suppresses intranuclear activator-protein-1 (AP-1) binding activity in mononuclear cells and plasma matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9). J Clin Endocrinol Metab, v. 86, n. 12, p. 5988-91, Dec 2001. ALLEN, J. P.; ART, M. M. O. The Art of Medicine in Ancient Egypt. Metropolitan Museum of Art, 2005. ISBN 9781588391704. APPLETON, I.; BROWN, N. J.; WILLOUGHBY, D. A. Apoptosis, necrosis, and proliferation: possible implications in the etiology of keloids. Am J Pathol, v. 149, n. 5, p. 1441-7, Nov 1996. ARDA, O.; GOKSUGUR, N.; TUZUN, Y. Basic histological structure and functions of facial skin. Clin Dermatol, v. 32, n. 1, p. 3-13, Jan-Feb 2014. BACH, E. A.; AGUET, M.; SCHREIBER, R. D. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol, v. 15, p. 563-91, 1997. BAILEY, A. J. et al. Characterization of the collagen of human hypertrophic and normal scars. Biochim Biophys Acta, v. 405, n. 2, p. 412-21, Oct 20 1975. BAINBRIDGE, P. Wound healing and the role of fibroblasts. J Wound Care, v. 22, n. 8, p. 407-8, 410-12, Aug 2013. BANGERT, C.; BRUNNER, P. M.; STINGL, G. Immune functions of the skin. Clin Dermatol, v. 29, n. 4, p. 360-76, Jul-Aug 2011. BASHIR, M. M. et al. Comparison of single intra operative versus an intra operative and two post operative injections of the triamcinolone after wedge excision of keloids of helix. J Pak Med Assoc, v. 65, n. 7, p. 737-41, Jul 2015. BERMAN, B.; BIELEY, H. C. Keloids. J Am Acad Dermatol, v. 33, n. 1, p. 117-23, Jul 1995. BERMAN, B.; DUNCAN, M. R. Short-term keloid treatment in vivo with human interferon alfa-2b results in a selective and persistent normalization of keloidal fibroblast collagen, glycosaminoglycan, and collagenase production in vitro. J Am Acad Dermatol, v. 21, n. 4 Pt 1, p. 694-702, Oct 1989. BERMAN, B.; FLORES, F. Recurrence rates of excised keloids treated with postoperative triamcinolone acetonide injections or interferon alfa-2b injections. J Am Acad Dermatol, v. 37, n. 5 Pt 1, p. 755-7, Nov 1997. BERMAN, B. et al. A novel hydrogel scaffold for the prevention or reduction of the recurrence of keloid scars postsurgical excision. J Am Acad Dermatol, v. 69, n. 5, p. 828-30, Nov 2013. BETTINGER, D. A. et al. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg, v. 98, n. 5, p. 827-33, Oct 1996. BILEZIKIAN, J. P.; RAISZ, L. G.; MARTIN, T. J. Principles of Bone Biology. Elsevier Science, 2008. ISBN 9780080568751. BIRINCIOGLU, I. et al. Determination of skin wound age by using cytokines as potential markers. J Forensic Leg Med, v. 44, p. 14-19, Aug 24 2016. BOCK, O. et al. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res, v. 297, n. 10, p. 433-8, Apr 2006. BOOTH, B. A.; POLAK, K. L.; UITTO, J. Collagen biosynthesis by human skin fibroblasts. I. Optimization of the culture conditions for synthesis of type I and type III procollagens. Biochim Biophys Acta, v. 607, n. 1, p. 145-60, Mar 28 1980. BRADLEY, J. R.; POBER, J. S. Prolonged cytokine exposure causes a dynamic redistribution of endothelial cell adhesion molecules to intercellular junctions. Lab Invest, v. 75, n. 4, p. 463-72, Oct 1996. BROKER, B. J. et al. Keloid excision and recurrence prophylaxis via intradermal interferon-gamma injections: a pilot study. Laryngoscope, v. 106, n. 12 Pt 1, p. 1497-501, Dec 1996. BROUGHTON, G., 2ND; JANIS, J. E.; ATTINGER, C. E. The basic science of wound healing. Plast Reconstr Surg, v. 117, n. 7 Suppl, p. 12S-34S, Jun 2006. BROWN, J. J. et al. Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans. Exp Dermatol, v. 17, n. 7, p. 610-3, Jul 2008. CALDERON, M.; LAWRENCE, W. T.; BANES, A. J. Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res, v. 61, n. 2, p. 343-7, Mar 1996. CAMACHO-MARTINEZ, F. M. et al. Results of a combination of bleomycin and triamcinolone acetonide in the treatment of keloids and hypertrophic scars. An Bras Dermatol, v. 88, n. 3, p. 387-94, May-Jun 2013. CARROLL, L. A. et al. Triamcinolone stimulates bFGF production and inhibits TGF-beta1 production by human dermal fibroblasts. Dermatol Surg, v. 28, n. 8, p. 704-9, Aug 2002. CARSWELL, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A, v. 72, n. 9, p. 3666-70, Sep 1975. CARVALHAES, S. M. et al. Assesment of the treatment of earlobe keloids with triamcinolone injections, surgical resection, and local pressure. Rev Col Bras Cir, v. 42, n. 1, p. 9-13, Jan-Feb 2015. CAVALIE, M. et al. Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases. Dermatol Ther, v. 28, n. 2, p. 74-8, Mar-Apr 2015. CHEN, J. et al. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J Biomed Opt, v. 16, n. 5, p. 051305, May 2011. CHIN, G. S. et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg, v. 108, n. 2, p. 423-9, Aug 2001. COELHO-LEMOS, I. C. et al. In utero malnutrition influences wound healing of newborn rats as measured by tensile strength and collagen deposition. JPEN J Parenter Enteral Nutr, v. 28, n. 4, p. 241-4; discussion 245, Jul-Aug 2004. DARNELL, J. E., JR.; KERR, I. M.; STARK, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, v. 264, n. 5164, p. 1415-21, Jun 3 1994. DE BOSSCHER, K. et al. Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci U S A, v. 94, n. 25, p. 13504-9, Dec 9 1997. DE FELICE, B. et al. Differential apoptosis markers in human keloids and hypertrophic scars fibroblasts. Mol Cell Biochem, v. 327, n. 1-2, p. 191-201, Jul 2009. DERYNCK, R.; ZHANG, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, v. 425, n. 6958, p. 577-84, Oct 9 2003. DESSEIN, A. J. et al. Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am J Hum Genet, v. 65, n. 3, p. 709-21, Sep 1999. DI CESARE, P. E. et al. Alteration of collagen composition and cross-linking in keloid tissues. Matrix, v. 10, n. 3, p. 172-8, Jul 1990. DOORNBOS, J. F. et al. The role of kilovoltage irradiation in the treatment of keloids. Int J Radiat Oncol Biol Phys, v. 18, n. 4, p. 833-9, Apr 1990. DRYDEN, S. V.; SHOEMAKER, W. G.; KIM, J. H. Wound management and nutrition for optimal wound healing. Atlas Oral Maxillofac Surg Clin North Am, v. 21, n. 1, p. 37-47, Mar 2013. DUNCAN, M. R.; BERMAN, B. Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med, v. 162, n. 2, p. 516-27, Aug 1 1985. EALICK, S. E. et al. Three-dimensional structure of recombinant human interferon-gamma. Science, v. 252, n. 5006, p. 698-702, May 3 1991. EHRLICH, H. P. et al. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol, v. 145, n. 1, p. 105-13, Jul 1994. EMING, S. A. et al. Accelerated wound closure in mice deficient for interleukin-10. Am J Pathol, v. 170, n. 1, p. 188-202, Jan 2007. FARRAR, M. A.; SCHREIBER, R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol, v. 11, p. 571-611, 1993. FORE, J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage, v. 52, n. 9, p. 24-35; quiz 36-7, Sep 2006. FRANSSON, J. et al. Proliferation and interferon-gamma receptor expression in psoriatic and healthy keratinocytes are influenced by interactions between keratinocytes and fibroblasts in a skin equivalent model. Arch Dermatol Res, v. 287, n. 6, p. 517-23, 1995. FURTADO, F.; HOCHMAN, B.; FERREIRA, L. M. Evaluating keloid recurrence after surgical excision with prospective longitudinal scar assessment scales. J Plast Reconstr Aesthet Surg, v. 65, n. 7, p. e175-81, Jul 2012. GABBIANI, G. et al. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med, v. 135, n. 4, p. 719-34, Apr 1 1972. GARNER, W. L. et al. Phenotypic differences in cytokine responsiveness of hypertrophic scar versus normal dermal fibroblasts. J Invest Dermatol, v. 101, n. 6, p. 875-9, Dec 1993. GARTNER, L. Tratado de Histologia. Elsevier Health Sciences Brazil, 2011. ISBN 9788535245783. GAUGLITZ, G. G. et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med, v. 17, n. 1-2, p. 113-25, Jan-Feb 2011. GAY, S. et al. Collagen types in early phases of wound healing in children. Acta Chir Scand, v. 144, n. 4, p. 205-11, 1978. GELSE, K.; POSCHL, E.; AIGNER, T. Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev, v. 55, n. 12, p. 1531-46, Nov 28 2003. GRANSTEIN, R. D. et al. A controlled trial of intralesional recombinant interferon-gamma in the treatment of keloidal scarring. Clinical and histologic findings. Arch Dermatol, v. 126, n. 10, p. 1295-302, Oct 1990. GRINNELL, F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol, v. 124, n. 4, p. 401-4, Feb 1994. GUPTA, S.; KUMAR, B. Intralesional cryosurgery using lumbar puncture and/or hypodermic needles for large, bulky, recalcitrant keloids. Int J Dermatol, v. 40, n. 5, p. 349-53, May 2001. HASEGAWA, T. et al. IFN-gamma fails to antagonize fibrotic effect of TGF-beta on keloid-derived dermal fibroblasts. J Dermatol Sci, v. 32, n. 1, p. 19-24, Jun 2003. HUANG, L. et al. A study of the combination of triamcinolone and 5-fluorouracil in modulating keloid fibroblasts in vitro. J Plast Reconstr Aesthet Surg, v. 66, n. 9, p. e251-9, Sep 2013. HUERRE, C. et al. Human type I procollagen genes are located on different chromosomes. Proc Natl Acad Sci U S A, v. 79, n. 21, p. 6627-30, Nov 1982. HUNASGI, S. et al. Keloid: A case report and review of pathophysiology and differences between keloid and hypertrophic scars. J Oral Maxillofac Pathol, v. 17, n. 1, p. 116-20, Jan 2013. ISHIDA, Y. et al. The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol, v. 172, n. 3, p. 1848-55, Feb 1 2004. JIN, Z. Increased c-Met phosphorylation is related to keloid pathogenesis: implications for the biological behaviour of keloid fibroblasts. Pathology, v. 46, n. 1, p. 25-31, Jan 2014. JUNQUEIRA, L. C.; BIGNOLAS, G.; BRENTANI, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J, v. 11, n. 4, p. 447-55, Jul 1979. KANITAKIS, J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol, v. 12, n. 4, p. 390-9; quiz 400-1, Jul-Aug 2002. KASSAB, A. N.; EL KHARBOTLY, A. Management of ear lobule keloids using 980-nm diode laser. Eur Arch Otorhinolaryngol, v. 269, n. 2, p. 419-23, Feb 2012. KEAST, D. H.; ORSTED, H. The basic principles of wound care. Ostomy Wound Manage, v. 44, n. 8, p. 24-8, 30-1, Aug 1998. KIERAN, I. et al. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen, v. 21, n. 3, p. 428-36, May-Jun 2013. KIM, H. D. et al. Recurrent Auricular Keloids during Pregnancy. Arch Plast Surg, v. 40, n. 1, p. 70-2, Jan 2013. KNIGHT, B. et al. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol, v. 47, n. 6, p. 826-33, Dec 2007. KULASEKARAN, P. et al. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol, v. 41, n. 4, p. 484-93, Oct 2009. LANE, J. E.; WALLER, J. L.; DAVIS, L. S. Relationship between age of ear piercing and keloid formation. Pediatrics, v. 115, n. 5, p. 1312-4, May 2005. LARRABEE, W. F., JR. et al. Intralesional interferon gamma treatment for keloids and hypertrophic scars. Arch Otolaryngol Head Neck Surg, v. 116, n. 10, p. 1159-62, Oct 1990. LATTOUF, R. et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem, v. 62, n. 10, p. 751-8, Oct 2014. LEE, T. Y. et al. Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg, v. 43, n. 2, p. 179-84, Aug 1999. LEE, Y. S. et al. Keloid-derived, plasma/fibrin-based skin equivalents generate de novo dermal and epidermal pathology of keloid fibrosis in a mouse model. Wound Repair Regen, v. 24, n. 2, p. 302-16, Mar 2016. LI, J.; CHEN, J.; KIRSNER, R. Pathophysiology of acute wound healing. Clin Dermatol, v. 25, n. 1, p. 9-18, Jan-Feb 2007. LIU, Y. et al. TGF-beta1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci Rep, v. 6, p. 32231, 2016. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, v. 25, n. 4, p. 402-8, Dec 2001. LUAN, Y. et al. Serum miRNAs Signature Plays an Important Role in Keloid Disease. Curr Mol Med, v. 16, n. 5, p. 504-14, 2016. MANCA, G. et al. Treatment of keloids and hypertrophic scars with bleomycin and electroporation. Plast Reconstr Surg, v. 132, n. 4, p. 621e-630e, Oct 2013. MCCAULEY, R. L. et al. Altered cytokine production in black patients with keloids. J Clin Immunol, v. 12, n. 4, p. 300-8, Jul 1992. MECHAM, R. P. Overview of extracellular matrix. Curr Protoc Cell Biol, v. Chapter 10, p. Unit 10 1, Dec 2012. MEDHI, B. et al. Efficacy and safety of an advanced formula silicone gel for prevention of post-operative scars. Dermatol Ther (Heidelb), v. 3, n. 2, p. 157-67, Dec 2013. MILES, R. H. et al. Systemic administration of interferon-gamma impairs wound healing. J Surg Res, v. 56, n. 3, p. 288-94, Mar 1994. MOLINAS, F. C.; WIETZERBIN, J.; FALCOFF, E. Human platelets possess receptors for a lymphokine: demonstration of high specific receptors for HuIFN-gamma. J Immunol, v. 138, n. 3, p. 802-6, Feb 1 1987. MONTAGNA, W. Comparative anatomy and physiology of the skin. Arch Dermatol, v. 96, n. 4, p. 357-63, Oct 1967. MOORE, K. W. et al. Interleukin-10. Annu Rev Immunol, v. 11, p. 165-90, 1993. MOUSTAFA, M. F.; ABDEL-FATTAH, M. A.; ABDEL-FATTAH, D. C. Presumptive evidence of the effect of pregnancy estrogens on keloid growth. Case report. Plast Reconstr Surg, v. 56, n. 4, p. 450-3, Oct 1975. MYLLYHARJU, J.; KIVIRIKKO, K. I. Collagens and collagen-related diseases. Ann Med, v. 33, n. 1, p. 7-21, Feb 2001. NAITOH, M. et al. Upregulation of HSP47 and collagen type III in the dermal fibrotic disease, keloid. Biochem Biophys Res Commun, v. 280, n. 5, p. 1316-22, Feb 9 2001. NAKASHIMA, M. et al. A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet, v. 42, n. 9, p. 768-71, Sep 2010. OLDROYD, S. D. et al. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int, v. 56, n. 6, p. 2116-27, Dec 1999. OMO-DARE, P. Yoruban contributions to the literature on keloids. J Natl Med Assoc, v. 65, n. 5, p. 367-72 passim, Sep 1973. PERANTEAU, W. H. et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol, v. 128, n. 7, p. 1852-60, Jul 2008. PROCKOP, D. J.; KIVIRIKKO, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem, v. 64, p. 403-34, 1995. RAPALA, K. The effect of tumor necrosis factor-alpha on wound healing. An experimental study. Ann Chir Gynaecol Suppl, v. 211, p. 1-53, 1996. REZENDE, S. A. et al. Mice lacking the gamma interferon receptor have an impaired granulomatous reaction to Schistosoma mansoni infection. Infect Immun, v. 65, n. 8, p. 3457-61, Aug 1997. RICARD-BLUM, S.; RUGGIERO, F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris), v. 53, n. 7, p. 430-42, Sep 2005. ROBERTS, A. B. et al. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci, v. 327, n. 1239, p. 145-54, Mar 12 1990. ROSENBLOOM, J. et al. Transcriptional control of human diploid fibroblast collagen synthesis by gamma-interferon. Biochem Biophys Res Commun, v. 123, n. 1, p. 365-72, Aug 30 1984. SAED, G. M. et al. Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch Dermatol, v. 134, n. 8, p. 963-7, Aug 1998. SATISH, L. et al. Gene expression patterns in isolated keloid fibroblasts. Wound Repair Regen, v. 14, n. 4, p. 463-70, Jul-Aug 2006. SATO, Y.; OHSHIMA, T.; KONDO, T. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun, v. 265, n. 1, p. 194-9, Nov 1999. SCHIERLE, H. P.; SCHOLZ, D.; LEMPERLE, G. Elevated levels of testosterone receptors in keloid tissue: an experimental investigation. Plast Reconstr Surg, v. 100, n. 2, p. 390-5; discussion 396, Aug 1997. SCHMID, P. et al. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol, v. 152, n. 2, p. 485-93, Feb 1998. SCHMIDT, C. et al. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem, v. 273, n. 9, p. 5081-5, Feb 27 1998. SEO, S. H.; SUNG, H. W. Treatment of keloids and hypertrophic scars using topical and intralesional mitomycin C. J Eur Acad Dermatol Venereol, v. 26, n. 5, p. 634-8, May 2012. SHAH, M.; FOREMAN, D. M.; FERGUSON, M. W. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, v. 108 ( Pt 3), p. 985-1002, Mar 1995. SHAMSI MEYMANDI, S.; REZAZADEH, A.; EKHLASI, A. Studying intense pulsed light method along with corticosteroid injection in treating keloid scars. Iran Red Crescent Med J, v. 16, n. 2, p. e12464, Feb 2014. SHEN, J. et al. Hypofractionated electron-beam radiation therapy for keloids: retrospective study of 568 cases with 834 lesions. J Radiat Res, v. 56, n. 5, p. 811-7, Sep 2015. SIMPSON, D. M.; ROSS, R. The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest, v. 51, n. 8, p. 2009-23, Aug 1972. SINGER, A. J.; CLARK, R. A. Cutaneous wound healing. N Engl J Med, v. 341, n. 10, p. 738-46, Sep 2 1999. SOLIS-HERRUZO, J. A.; BRENNER, D. A.; CHOJKIER, M. Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem, v. 263, n. 12, p. 5841-5, Apr 25 1988. SOLOMON, E. et al. Chromosomal assignments of the genes coding for human types II, III, and IV collagen: a dispersed gene family. Proc Natl Acad Sci U S A, v. 82, n. 10, p. 3330-4, May 1985. SON, I. P. et al. Pilot Study of the Efficacy of 578 nm Copper Bromide Laser Combined with Intralesional Corticosteroid Injection for Treatment of Keloids and Hypertrophic Scars. Ann Dermatol, v. 26, n. 2, p. 156-61, Apr 2014. STADELMANN, W. K.; DIGENIS, A. G.; TOBIN, G. R. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg, v. 176, n. 2A Suppl, p. 26S-38S, Aug 1998. STOUT, A. J.; GRESSER, I.; THOMPSON, W. D. Inhibition of wound healing in mice by local interferon alpha/beta injection. Int J Exp Pathol, v. 74, n. 1, p. 79-85, Feb 1993. SUAREZ, E. et al. Skin equivalent tensional force alters keloid fibroblast behavior and phenotype. Wound Repair Regen, v. 22, n. 5, p. 557-68, Sep-Oct 2014. SYTO, R. et al. Structural and biological stability of the human interleukin 10 homodimer. Biochemistry, v. 37, n. 48, p. 16943-51, Dec 1 1998. TAKEHARA, K. Growth regulation of skin fibroblasts. J Dermatol Sci, v. 24 Suppl 1, p. S70-7, Dec 2000. TANAYDIN, V. et al. Efficacy of custom-made pressure clips for ear keloid treatment after surgical excision. J Plast Reconstr Aesthet Surg, v. 69, n. 1, p. 115-21, Jan 2016. TANG, W. W.; VAN, G. Y.; QI, M. Myofibroblast and alpha 1 (III) collagen expression in experimental tubulointerstitial nephritis. Kidney Int, v. 51, n. 3, p. 926-31, Mar 1997. TSIROGIANNI, A. K.; MOUTSOPOULOS, N. M.; MOUTSOPOULOS, H. M. Wound healing: immunological aspects. Injury, v. 37 Suppl 1, p. S5-12, Apr 2006. TUAN, T. L.; NICHTER, L. S. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today, v. 4, n. 1, p. 19-24, Jan 1998. UD-DIN, S. et al. Photodynamic therapy: an innovative approach to the treatment of keloid disease evaluated using subjective and objective non-invasive tools. Arch Dermatol Res, v. 305, n. 3, p. 205-14, Apr 2013. UITTO, J. et al. Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci U S A, v. 82, n. 17, p. 5935-9, Sep 1985. ULRICH, D. et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with different types of scars and keloids. J Plast Reconstr Aesthet Surg, v. 63, n. 6, p. 1015-21, Jun 2010. VALENTE, G. et al. Distribution of interferon-gamma receptor in human tissues. Eur J Immunol, v. 22, n. 9, p. 2403-12, Sep 1992. VARGA, J.; ROSENBLOOM, J.; JIMENEZ, S. A. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J, v. 247, n. 3, p. 597-604, Nov 1 1987. VERHAEGEN, P. D. et al. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen, v. 17, n. 5, p. 649-56, Sep-Oct 2009. VON DER MARK, K. Localization of collagen types in tissues. Int Rev Connect Tissue Res, v. 9, p. 265-324, 1981. WANG, G. et al. Role of IL-17 and TGF-beta in peritoneal adhesion formation after surgical trauma. Wound Repair Regen, v. 22, n. 5, p. 631-9, Sep-Oct 2014. WANG, H.; LUO, S. Establishment of an animal model for human keloid scars using tissue engineering method. J Burn Care Res, v. 34, n. 4, p. 439-46, Jul-Aug 2013. WELCH, M. P.; ODLAND, G. F.; CLARK, R. A. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol, v. 110, n. 1, p. 133-45, Jan 1990. WERNER, S.; GROSE, R. Regulation of wound healing by growth factors and cytokines. Physiol Rev, v. 83, n. 3, p. 835-70, Jul 2003. WILLIAMS, M. A. Autoradiography and immunocytochemistry. Quantitative methods in biology. North-Holland, 1977. WILSON, A. M. Eradication of keloids: Surgical excision followed by a single injection of intralesional 5-fluorouracil and botulinum toxin. Can J Plast Surg, v. 21, n. 2, p. 87-91, Summer 2013. WITTE, M. B.; BARBUL, A. General principles of wound healing. Surg Clin North Am, v. 77, n. 3, p. 509-28, Jun 1997. WORLEY, C. A. The wound healing process symphony: Part I. Dermatol Nurs, v. 16, n. 1, p. 67, 72, Feb 2004. WULANDARI, E. et al. Expressions of Collagen I and III in Hypoxic Keloid Tissue. Kobe J Med Sci, v. 62, n. 3, p. E58-69, 2016. WYSOCKI, A. B. Skin anatomy, physiology, and pathophysiology. Nurs Clin North Am, v. 34, n. 4, p. 777-97, v, Dec 1999. XU, J. et al. A three-dimensional collagen lattice activates NF-kappaB in human fibroblasts: role in integrin alpha2 gene expression and tissue remodeling. J Cell Biol, v. 140, n. 3, p. 709-19, Feb 9 1998. YAMAMOTO, T.; ECKES, B.; KRIEG, T. Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1. Biochem Biophys Res Commun, v. 281, n. 1, p. 200-5, Feb 16 2001. YEH, F. L.; SHEN, H. D.; TAI, H. Y. Decreased production of MCP-1 and MMP-2 by keloid-derived fibroblasts. Burns, v. 35, n. 3, p. 348-51, May 2009. YING, S. et al. TNF alpha mRNA expression in allergic inflammation. Clin Exp Allergy, v. 21, n. 6, p. 745-50, Nov 1991. YOUNAI, S. et al. Modulation of collagen synthesis by transforming growth factor-beta in keloid and hypertrophic scar fibroblasts. Ann Plast Surg, v. 33, n. 2, p. 148-51, Aug 1994. ZHANG, G. Y. et al. Role of caveolin-1 in the pathogenesis of tissue fibrosis by keloid-derived fibroblasts in vitro. Br J Dermatol, v. 164, n. 3, p. 623-7, Mar 2011. ZHOU, R. et al. miR-21 promotes collagen production in keloid via Smad7. Burns, Oct 4 2016.pt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectQueloide.pt_BR
dc.subjectColágeno.pt_BR
dc.subjectCitocinas.pt_BR
dc.subjectkeloid.pt_BR
dc.subjectCollagen.pt_BR
dc.subjectCytokines.pt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::MEDICINApt_BR
dc.titleAvaliação morfométrica do colágeno total, tipo I e tipo III e análise da expressão in situ de citocinas em queloidespt_BR
dc.typeDissertaçãopt_BR
Aparece nas coleções:Programa de Pós-Graduação em Ciências da Saúde

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Isabela R da Silva.pdfDissert Isabela R da Silva2,01 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons