Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/123456789/1355
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCINTRA, Alessandra Cristina-
dc.creator.ID07753814621pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5211963605643463pt_BR
dc.contributor.advisor1OLIVEIRA JUNIOR, Robson Tadeu Soares de-
dc.contributor.advisor1ID18129008807pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7783176519114288pt_BR
dc.date.accessioned2022-07-29T16:28:31Z-
dc.date.available2016-10-10-
dc.date.available2022-07-29T16:28:31Z-
dc.date.issued2016-10-10-
dc.identifier.citationCINTRA, Alessandra Cristina. Determinação eletroanalítica de Losartana®, Captopril® e Alisquireno® em fluidos biológicos e em formulações comerciais. 2016. 116f . Dissertação (Mestrado em Química) - Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais, Universidade Federal do Triângulo Mineiro, Uberaba, 2016 .pt_BR
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/123456789/1355-
dc.description.resumoPressão arterial (PA) alterada, é um importante fator de risco para complicações cardiovasculares e renais. O sistema renina-angiotensina-aldosterona (SRAA) tem sido o alvo no centro da fase para todas as complicações cardiovasculares e cardio-renais. Neste sentido, Losartana®, Captopril® e Alisquireno® são medicamentos da classe dos antagonistas dos receptores da angiotensina (ARAs). Deste modo, a presente dissertação visa apresentar métodos de análises fundados em técnicas eletroquímicas por voltametria de onda quadrada (SWV), no intuito de facilitar e viabilizar financeiramente as análises dos fármacos em questão. Os sinais eletroquímicos foram obtidos, através da oxidação eletroquímica dos fármacos, em eletrodo de diamante dopado com boro (DDB). As análises foram feitas em meio eletrolítico de tampão de Britton-Robinson (BR) em diferentes pH’s, onde fixou-se os melhores parâmetros de análise (frequência, amplitude e incremento de varredura). Uma vez otimizados os parâmetros de onda quadrada, foi definida a região linear entre corrente de pico (Ip) vs. concentração. A oxidação dos fármacos revelam picos de oxidação bem definidos e irreversíveis. Para o Alisquireno®, a curva analítica é obtida no intervalo de concentração de 1,81 x 10-5 a 1,63 x 10-4 mol/L (r = 0,997), com limites de detecção e quantificação de 2,5 x 10-8 e 8,4 x 10-8 mol/L, respectivamente. Os valores de recuperação alcançam de 98,2% a 100,2%. Para a Losartana®, a curva analítica é obtida no intervalo de concentração de 9,38 x 10-6 a 8,75 x 10-5 mol/L (r = 0,997), com limites de detecção e quantificação de 2,64 x 10-8 e 8,82 x 10-8 mol/L, respectivamente. Os valores de recuperação alcançam de 96,2% a 113,5%. E finalmente, para o Captopril®, a curva analítica é obtida no intervalo de concentração de 2,70 x 10-5 a 2,30 x 10-4 mol/L (r = 0,995), com limites de detecção e quantificação de 6,67 x 10-8 e 2,22 x 10-7 mol/L, respectivamente. Os valores de recuperação alcançam de 99,7% a 101,0%. Os resultados de recuperação obtidos indicam que não há efeitos de interferência da matriz dos fármacos sobre a determinação analítica dos mesmos. Na análise de Alisquireno® e Captopril® em plasma humano os interferentes comuns do soro não alteraram insignificantemente as análises, rendendo boas médias de recuperação de 95,5% a 97,8%, para Alisquireno® e de 100,6%, para Captopril®. Também pode-se afirmar que o eletrodo de DDB exibiu uma resposta estável, sendo este considerado seletivo e sensível para os fármacos estudados.pt_BR
dc.description.abstractBlood pressure (BP) change is an important risk factor for cardiovascular and renal complications. The renin-angiotensin-aldosterone system (RAAS) has been the target in the center of phase for all the cardiovascular and cardio-renal complications. In this sense, Losartan®, Captopril® and Aliskiren® are drugs in the class of angiotensin receptor (ARBs). Thus, this thesis aims to present methods of analysis grounded in electrochemical techniques by square wave voltammetry (SWV) in order to facilitate and financially viable analysis of the drugs in question. The electrochemical signals were obtained by electrochemical oxidation of drugs in diamond electrode doped with boron (BDD). Analyses were made of electrolytic means of Britton-Robinson buffer (BR) in different pH's where we fixed the best analysis parameters (frequency, amplitude and scan increment). Since the square wave optimized parameters, the linear region was defined between peak current (Ip) vs. concentration. Oxidation of drugs show well defined and irreversible oxidation peaks. For Aliskiren®, the calibration curve is obtained in the concentration range of 1.81 x 10-5 to 1.63 x 10-4 mol/L (r = 0.997), with limits of detection and quantification of 2.5 x 10-8 and 8.4 x 10-8 mol/L, respectively. The recovery values reaching 98.2% to 100.2%. For Losartan®, the calibration curve is obtained in the concentration range of 9.38 x 10-6 to 8.75 x 10-5 mol/L (r = 0.997), with limits of detection and quantification of 2.64 x 10-8 and 8.82 x 10-8 mol/L, respectively. The recovery values reaching 96.2 % to 113.5 %. And finally for Captopril®, the calibration curve is obtained in the concentration range of 2.70 x 10-5 to 2.30 x 10-4 mol/L ( r = 0.995 ) , with limits of detection and quantification of 6.67 x 10-8 and 2.22 x 10-7 mol/L, respectively. The recovery values reaching 99.7 % to 101.0 %. These results indicate that there is no interference effects of the array of drugs on the analytical determination of the same. In Aliskiren® analysis and Captopril® interferents in human plasma serum is common insignificantly altered the analysis, yielding good average recovery of 95.5 % to 97.8 % for Aliskiren® and 100.6 % for Captopril®. It can also say that the BDD electrode showed a stable response, which is considered selective and sensitive to the drugs studied.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal do Triângulo Mineiropt_BR
dc.publisher.departmentInstituto de Ciências Exatas, Naturais e Educação - ICENEpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.initialsUFTMpt_BR
dc.publisher.programPrograma de Pós-Graduação Multicêntrico em Química de Minas Geraispt_BR
dc.relation.referencesAbt, B. et al., 2016. Electrochemical Determination of Sulphur-containing Pharmaceuticals Using Boron-doped Diamond Electrodes. Electroanalysis, p.n/a–n/a. Available at: http://doi.wiley.com/10.1002/elan.201501150. Adireddy, V. et al., 2013. Liquid chromatography-tandem mass spectrometric assay for aliskiren a novel renin inhibitor in micro-volumes of human plasma a pharmacokinetic application in healthy South Indian male subjects. Biomedical Chromatography, 27(8), pp.1062–1069. Akyu, A., 2014. Simultaneous Determination of Amlodipine and Aliskren in Tablets by High-Performance Liquid Chromatography. , pp.685–690. Anon, VP10 = Rasilez AmLo_Bula_Paciente. , pp.1–8. Ashok, S., Varma, M.S. & Swaminathan, S., 2012. A validated LC method for the determination of the enantiomeric purity of aliskiren hemifumarate in bulk drug samples. Journal of Chromatographic Science, 50(9), pp.799–802. Aydın Yiğit ; Yavuz Yardım ; Zühre Şentürk, 2015. Voltammetric Sensor Based on Boron-Doped Diamond Electrode for Simultaneous Determination of Paracetamol, Caffeine, and Aspirin in Pharmaceutical Formulations. IEEE Sensors Journal, 16(6), pp.1674 – 1680. Aydo, Z., 2015. Simultaneous Determination of Aliskiren , Amlodipine and Hydrochlorothiazide in Spiked Human Plasma and Urine by High Performance Liquid Chromatography 1. , 70(4), pp.502–509. Aydogmus, Z., 2012. Spectrofluorimetric determination of aliskiren in dosage forms and urine. Luminescence, 27(6), pp.489–494. Aydogmus, Z., Sari, F. & Ulu, S.T., 2012. Spectrofluorimetric determination of aliskiren in tablets and spiked human plasma through derivatization with dansyl chloride. Journal of Fluorescence, 22(2), pp.549–556. Bard, A.J. et al., 1944. ELECTROCHEMICAL METHODS Fundamentals and Applications. De Barros, R.D.C.M. et al., 2005. Filmes de diamante CVD dopado com boro. Parte I. Histórico, produção e caracterização. Quimica Nova, 28(2), pp.317–325. Barroso, A.M.D., 2013. Hipertensão Arterial Sistêmica 044. Diretrizes Clinicas: Protocolos línicos, pp.1–32. Beitollahi, H. et al., 2015. Preparation, Characterization and Electrochemical Application of ZnO-CuO Nanoplates for Voltammetric Determination of Captopril and Tryptophan Using Modified Carbon Paste Electrode. Electroanalysis, 27(7), pp.1742–1749. Available at: http://doi.wiley.com/10.1002/elan.201500016. Bolattin, M.B. et al., 2015. Oxidative degradation of the antihypertensive drug losartan by alkaline copper(III) periodate complex in the presence and absence of ruthenium(III) catalyst: a kinetic and mechanistic study of losartan metabolite. Monatshefte für Chemie - Chemical Monthly, 146(10), pp.1649–1663. Available at: http://link.springer.com/10.1007/s00706-015-1431-x. Brasil, M. da S., 2001. Hipertensão Arterial Sistêmica e Diabetes Mellitus - Protocolo. Braun-Menendez, E. et al., 1940. The substance causing renal hypertension. J. Physiol, 98, pp.283–298. Brito, N.M. et al., 2003. Validação De Métodos Analíticos: Estratégia E Discussão. Pesticidas: R.Ecotoxicol. e Meio Ambiente, 13, pp.129–146. Burckhardt, B.B., Tins, J. & Laeer, S., 2014. Simultaneous quantitative and qualitative analysis of aliskiren, enalapril and its active metabolite enalaprilat in undiluted human urine utilizing LC-ESI-MS/MS. Biomedical Chromatography, 28(12), pp.1679–1691. Carvalho, F.H.O. et al., 2015. Analytical determination of aliskiren in pharmaceutical formulations using boron-doped diamond electrodes. Analytical Methods. Chaves, S.C. et al., 2015. Simultaneous Determination of Caffeine, Ibuprofen, and Paracetamol by Flow-injection Analysis with Multiple-pulse Amperometric Detection on Boron-doped Diamond Electrode. Electroanalysis, 27(12), pp.2785–2791. Chobanian, A. V. et al., 2003. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42(6), pp.1206–1252. Ciências, D. De et al., 2011. Artigo. , 34(9), pp.1575–1581. Ebeid, W.M. et al., 2014. Synchronized separation of seven medications representing most commonly prescribed antihypertensive classes by using reversed-phase liquid chromatography: Application for analysis in their combined formulations. Journal of Separation Science, 37(7), pp.748–757. Einaga, Y., Foord, J.S. & Swain, G.M., 2014. Diamond electrodes: Diversity and maturity. MRS Bulletin, 39(06), pp.525–532. Available at: http://www.journals.cambridge.org/abstract_S0883769414000943. El-Bagary, R.I. et al., 2014. Ion-Pair LC Method for Simultaneous Determination of Aliskiren Hemifumarate, Amlodipine Besylate and Hydrochlorothiazide in Pharmaceuticals. Chromatographia, 77(3-4), pp.257–264. Available at: http://link.springer.com/10.1007/s10337-013-2592-6. Electrochemistry, A., 2000. Second Edition Analytical. El-hay, S.S.A., El-mammli, M.Y. & Shalaby, A.A., 2011. Determination of clemastine hydrogen fumarate , desloratadine , losartan potassium and moxepril HCl through binary complex formation with eosin. ARABIAN JOURNAL OF CHEMISTRY. Available at: http://dx.doi.org/10.1016/j.arabjc.2011.06.021. Ensafi, A. a. & Arabzadeh, a., 2012. A new sensor for electrochemical determination of captopril using chlorpromazine as a mediator at a glassy carbon electrode. Journal of Analytical Chemistry, 67(5), pp.486–496. Available at: http://link.springer.com/10.1134/S1061934812050024. Ensafi, A.A. & Hajian, R., 2008. Determination of losartan and triamterene in pharmaceutical compounds and urine using cathodic adsorptive stripping voltammetry. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 24(11), pp.1449–1454. Ferreira Vitoreti, A.B. et al., 2014. Electroanalytical determination of captopril in pharmaceutical formulations using boron-doped diamond electrodes. International Journal of Electrochemical Science, 9(3), pp.1044–1054. Freitas, J.M., 2015. Determinação estequiométrica de dimenidrinato e simultânea de 8- cloroteofilina , difenidramina e piridoxina usando análise por injeção em batelada com detecção amperométrica de múltiplos pulsos. , p.110. Friedrich, S. & Schmieder, R.E., 2013. Review of direct renin inhibition by aliskiren. Journal of the renin-angiotensin-aldosterone system : JRAAS, pp.2013–2016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23873285. Gholivand, M.B. & Khodadadian, M., 2013. Simultaneous Voltammetric Determination of Captopril and Hydrochlorothiazide on a Graphene/Ferrocene Composite Carbon Paste Electrode. Electroanalysis, 25(5), pp.1263–1270. Golan, D.E., Tashjian, a. H. & Armstrong, a. W., 2009. Princípios de Farmacologia: a base fisiopatológica da farmacoterapia. Guanabara Koogan, pp.166–185. Goyani, V. et al., 2013. Simultaneous quantification of aliskiren, valsartan and sitagliptin by LC with fluorescence detection: Evidence of pharmacokinetic interaction in rats. Chromatographia, 76(9-10), pp.515–521. Grupo Hospitalar Conceição, 2009. Protocolo de Hipertensão Arterial Sistêmica para a Atenção Primária em Saúde. Guedes, T. de J. et al., 2015. Determination of prazosin in pharmaceutical samples by flow injection analysis with multiple-pulse amperometric detection using boron-doped diamond electrode. Journal of Solid State Electrochemistry. Available at: http://link.springer.com/10.1007/s10008-015-3105-3. Guyton, A. & Hall, J., 2010. Guyton y Hall Tratado de Fisiología Médica. He, Y. et al., 2015. Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug. Jeac, 759, pp.167–173. Available at: http://dx.doi.org/10.1016/j.jelechem.2015.11.011. Jalali, F. & Ranjbar, S., 2014. Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate. Russian Journal of Electrochemistry, 50(5), pp.482–489. Available at: http://link.springer.com/10.1134/S1023193513120082. Karimi-Maleh, H. et al., 2014. Voltammetric determination of captopril using a novel ferrocene-based polyamide as a mediator and multi-wall carbon nanotubes as a sensor. Journal of Analytical Chemistry, 69(2), pp.162–168. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84893935032&partnerID=40&md5=9f4db7dfed1446b475c7ca5d3e2fd7e3. Khan, S. et al., 2014. Determination of captopril using selective photoluminescence enhancement of 2-mercaptopropionic modified CdTe quantum dots. Materials Research Express, 1(2), p.026202. Available at: http://stacks.iop.org/20531591/1/i=2/a=026202?key=crossref.be7f0706e7f1af75a2669f4e6aff3ee6. Kuśmierek, K. & Bald, E., 2007. A Simple Liquid Chromatography Method for the Determination of Captopril in Urine. Chromatographia, 66(1-2), pp.71–74. Lee, H.W. et al., 2009. Hydrophilic interaction chromatography-tandem mass spectrometric analysis of irbesartan in human plasma: Application to pharmacokinetic study of irbesartan. Journal of Separation Science, 32(14), pp.2353–2358. Available at: <Go to ISI>://WOS:000268595800003\nhttp://onlinelibrary.wiley.com/store/10.1002/jssc.200900148/asset/2353_ftp.pdf?v=1&t=h6j9z37j&s=3dc3566bd23865238964ba692e5a1e2acebf8e90. Lima, A.B. et al., 2014. Simultaneous determination of paracetamol and ibuprofen in pharmaceutical samples by differential pulse voltammetry using a boron-doped diamond electrode. Journal of the Brazilian Chemical Society, 25(3), pp.478–483. Long, S.Y. et al., 2015. Quantitative detection of captopril in tablet and blood plasma samples by the combination of surface-enhanced Raman spectroscopy with multiplicative effects model. Journal of Raman Spectroscopy, 46(7), pp.605–609. Lotufo, P.A. et al., 1998. Mortalidade Precoce por Doenças do Coração no Brasil. Comparação com Outros Países. Arquivos Brasileiros de Cardiologia, 70(5), pp.321–325. Available at: http://www.scielo.br/pdf/abc/v70n5/3328.pdf. Lourenção, B.C., 2009. Determinação Volltamétrica Simultânea de Paracetamol e Cafeína e de Ácido Ascórbico e Cafeína em Formulações Farmacêuticas Empregando um Eletrodo de Diamante Dopado com Boro. Lourencao, B.C., Medeiros, R.A. & Fatibello-Filho, O., 2015. Simultaneous determination of antihypertensive drugs by flow injection analysis using multiple pulse amperometric detection with a cathodically pretreated boron-doped diamond electrode. Journal of Electroanalytical Chemistry, 754, pp.154–159. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1572665715003100. Mannemala, S.S. & Nagarajan, J.S.K., 2015. Development and validation of a HPLC-PDA bioanalytical method for the simultaneous estimation of Aliskiren and Amlodipine in human plasma. Biomedical Chromatography, 29(3), pp.346–352. Manoel, L., 1922. Voltametria : Conceitos e Técnicas. , (Ii). Mansano, G.R. & Sartori, E.R., 2015. Short Comunnication Oxidação Eletroquímica de Anlodipino e Hidroclorotiazida Sobre o Eletrodo de Diamante Dopado com Boro : Potencialidade de Determinação Simultânea em Urina. , 7(1). Mansour, F.R. & Danielson, N.D., 2012. Separation methods for captopril in pharmaceuticals and biological fluids. Journal of Separation Science, 35(10-11), pp.1213–1226. Mavromoustakos, T. et al., 1999. An effort to understand the molecular basis of hypertension through the study of conformational analysis of Losartan and Sarmesin using a combination of nuclear magnetic resonance spectroscopy and theoretical calculations. Journal of Medicinal Chemistry, 42(10), pp.1714–1722. Melorose, J., Perroy, R. & Careas, S., 2015. Statewide Agricultural Land Use Baseline 2015, 1. Ministério da Saúde, 2006. Hipertensão Arterial Sistemica, Available at: http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad15.pdf. Negrão, C.E., Urbana, M. & Rondon, P.B., 2001. Exercício físico , hipertensão e controle barorreflexo da pressão arterial. Rev Bras Hipertens, 8(1), pp.89–95. Available at: http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang=p&nextAction=lnk&exprSearch=284130&indexSearch=ID. Nikkho, Z. & Ltda, F., Losartana potássica. , pp.1–11. Oliveira Rossini, P., Felix, F.S. & Angnes, L., 2012. A simple and precise conductometric method for the determination of losartan in pharmaceutical products. Central European Journal of Chemistry, 10(6), pp.1842–1849. Available at: http://link.springer.com/10.2478/s11532-012-0110-6. Page, I.H. & Helmer, O.M., 1940. A Crystalline Pressor Substance (Angiotonin) Resulting From the Reaction Between Renin and Renin-Activator. The Journal of experimental medicine, 71(1), pp.29–42. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2134997&tool=pmcentrez&rendertype=abstract. Pamuk, D. et al., 2013. Redox pathways of aliskiren based on experimental and computational approach and its voltammetric determination. Journal of the Brazilian Chemical Society, 24(8), pp.1276–1286. Paterakis, N. et al., 2012. The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. Journal of Hazardous Materials, 199-200, pp.88–95. Available at: http://dx.doi.org/10.1016/j.jhazmat.2011.10.075. Perdew, J., Burke, K. & Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical review letters, 77(18), pp.3865–3868. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10062328. Pereira, G.F. et al., 2012. Electrochemical degradation of bisphenol A using a flow reactor with a boron-doped diamond anode. Chemical Engineering Journal, 198-199, pp.282–288. Available at: http://dx.doi.org/10.1016/j.electacta.2015.09.170. Pereira, P.F. et al., 2016. A simple and fast batch injection analysis method for simultaneous determination of phenazopyridine, sulfamethoxazole, and trimethoprim on boron-doped diamond electrode. Journal of Electroanalytical Chemistry, 766, pp.87–93. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1572665716300352. Perez, C., Simões, F.R. & Codognoto, L., 2015. Voltammetric determination of 17α-ethinylestradiol hormone in supply dam using BDD electrode. Journal of Solid State Electrochemistry. Available at: http://link.springer.com/10.1007/s10008-015-3091-5. Politi, A. et al., 2011. Conformational properties and energetic analysis of aliskiren in solution and receptor site. Molecular Informatics, 30(11-12), pp.973–985. Pronina, O.G. et al., 2012. Quantitave Determination of Losartan and Its Metabolite E 3174 in Rat Urine. , 67(3), pp.133–135. Rajabzadeh, N. et al., 2015. A Highly Sensitive Sensor Based on Reduced Graphene Oxide, Carbon Nanotube and a Co (II) Complex Modified Carbon Paste Electrode: Simultaneous Determination of Isoprenaline, Captopril and Tryptophan. Electroanalysis, 27(12), pp.2792–2799. Salamanca-Neto, C.A.R. et al., 2016. Differential pulse voltammetric method for the individual and simultaneous determination of antihypertensive drug metoprolol and its association with hydrochlorothiazide in pharmaceutical dosage forms. Sensors and Actuators, B: Chemical, 230, pp.630–638. Available at: http://dx.doi.org/10.1016/j.snb.2016.02.071. Salim, M.M. et al., 2014. Simultaneous determination of aliskiren hemifumarate, amlodipine besylate, and hydrochlorothiazide in their triple mixture dosage form by capillary zone electrophoresis. Journal of Separation Science, 37(9-10), pp.1206–1213. Santos, A.M. et al., 2015. Flow injection simultaneous determination of acetaminophen and tramadol in pharmaceutical and biological samples using multiple pulse amperometric detection with a boron-doped diamond electrode. Diamond and Related Materials, 60, pp.1–8. Available at: http://www.sciencedirect.com/science/article/pii/S0925963515300546. Santos, J.R. & Rangel, A.O.S.S., 2015. Development of a chromatographic low pressure flow injection system using amperometric detection: Application to the analysis of niacin in coffee. Food Chemistry, 187, pp.152–158. Santos, M.C.G. et al., 2013. Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations. Sensors and Actuators, B: Chemical, 188(March 2016), pp.263–270. Sartori, E.R. et al., 2009. Square-wave voltammetric determination of acetylsalicylic acid in pharmaceutical formulations using a boron-doped diamond electrode without the need of previous alkaline hydrolysis step. Journal of the Brazilian Chemical Society, 20(2), pp.360–366. Shah, H.J. et al., 2009. Original Paper Rapid determination of losartan and losartan acid in human plasma by multiplexed LC–MS/MS. , pp.3388–3394. Shah, P.A., Sharma, P. & Shah, J. V, 2015. Simultaneous analysis of losartan , its active metabolite , and hydrochlorothiazide in human plasma by a UPLC-MS / MS method. , pp.714–733. Silva, L.P. et al., 2014. SIMULTÂNEA DE FÁRMACOS ANTI-HIPERTENSIVOS Introdução Resultados e Discussão. , p.2012. Souza, D. De et al., 2004. Revisão. , 27(5), pp.790–797. Souza, D. De et al., 2003. Revisão. , 26(1), pp.81–89. Stanković, D.M. et al., 2016. Sensitive and selective determination of riboflavin (vitamin B2) based on boron-doped diamond electrode. Monatshefte für Chemie - Chemical Monthly, 147(6), pp.995–1000. Available at: http://link.springer.com/10.1007/s00706-016-1665-2. Teófilo, R.F. et al., Quantificação Simultânea De Dopamina, Ácido Úrico E Ácido Ascórbico Com Eletrodo De Diamante Dopado Com Boro Usando Voltametria E Pls. , pp.9–11. Tortora, G. & Derrickson, B., 2013. Principios de Anatomía y Fisiología. Tzanavaras, P.D. et al., 2003. Flow and sequential injection manifolds for the spectrophotometric determination of captopril based on its oxidation by Fe(III). Mikrochimica Acta, 142(1-2), pp.55–62. Wirley, F. & Ribeiro, P., 2010. Desenvolvimento de metodologia eletroanalítica para a determinação de haloperidol em formulações comerciais. Yan, Z. et al., 2012. Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. Journal of Hazardous Materials, 199-200, pp.217–225. Available at: http://dx.doi.org/10.1016/j.jhazmat.2011.10.087. Ziyatdinova, G.K., Budnikov, G.K. & Pogorel’tsev, V.I., 2006. Determination of captopril in pharmaceutical forms by stripping voltammetry. Journal of Analytical Chemistry, 61(8), pp.798–800. Endereços Eletrônicos: http://www.guiadafarmacia.com.br/edicao-254-especial-farmaceutico/7388-patentes-de-medicamentos http://agenciabrasil.ebc.com.br/geral/noticia/2015-12/anvisa-interdita-lote-de-medicamento-indicado-para-hipertensao); http://exame.abril.com.br/brasil/noticias/anvisa-interdita-lote-de-medicamento-para-hipertensao).pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEletroquímica.pt_BR
dc.subjectLosartana®.pt_BR
dc.subjectCaptopril®.pt_BR
dc.subjectAlisquireno®.pt_BR
dc.subjectElectrochemistry.pt_BR
dc.subjectLosartan®.pt_BR
dc.subjectCaptopril®.pt_BR
dc.subjectAliskiren®.pt_BR
dc.subjectSWV.pt_BR
dc.subjectDDB.pt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA::ELETROANALITICApt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::MEDICINA-
dc.titleDeterminação eletroanalítica de Losartana®, Captopril® e Alisquireno® em fluidos biológicos e em formulações comerciaispt_BR
dc.typeDissertaçãopt_BR
Aparece nas coleções:Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERT ALESSANDRA C CINTRA.pdfDISSERT ALESSANDRA C CINTRA2,57 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons