Use este identificador para citar ou linkar para este item:
http://bdtd.uftm.edu.br/handle/123456789/2039
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | MARTINS, Lívia Alves | - |
dc.creator.ID | 08947011690 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/8964579477820145 | pt_BR |
dc.contributor.advisor1 | RODRIGUES, Aldo Rogelis Aquiles | - |
dc.contributor.advisor1ID | 83546448634 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6645292290768657 | pt_BR |
dc.date.accessioned | 2025-09-09T16:08:12Z | - |
dc.date.available | 2014-12-12 | - |
dc.date.available | 2025-09-09T16:08:12Z | - |
dc.date.issued | 2014-12-12 | - |
dc.identifier.citation | MARTINS, Lívia Alves. Imunolocalização de canais para sódio voltagem-dependentes em neurônios dos núcleos ambíguo e dorsal motor do vago. 2014. 75f . Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2014 . | pt_BR |
dc.identifier.uri | http://bdtd.uftm.edu.br/handle/123456789/2039 | - |
dc.description.resumo | O núcleo ambíguo (NA) é uma coleção de neurônios motores distribuídos ventrolateralmente na formação reticular do bulbo que projetam fibras eferentes viscerais especiais para faringe, laringe, esôfago e via fibras eferentes viscerais gerais para pulmão e coração. O núcleo dorsal motor do vago (DMV) contém neurônios autonômicos situados dorsomedialmente no bulbo que enviam fibras viscerais gerais principalmente para as vísceras abdominais como estômago, fígado, pâncreas e intestino. O objetivo desse estudo foi avaliar a expressão de canais para sódio dependentes de voltagem (Nav) e sua localização subcelular nos neurônios das diferentes formações do NA e no DMV. Ratos Wistar de 30 dias foram perfundidos transcardiacamente e reações de imunofluorescência de dupla ou tripla marcação foram realizadas em fatias coronais de 25 a 40 m do bulbo. A identificação do NA e suas formações foi feita através de marcação anti-colina acetiltransferase (ChAT). Experimentos com o traçador retrógrado toxina colérica conjugada ao Alexa Fluor 488 (CTb) injetado no parênquima pulmonar ou a expressão do marcador de lesão neuronal ATF-3, após a ressecção do nervo laríngeo recorrente (RLN), foram também usados para identificação de neurônios no NA. Neurônios da formação loose (NAl, n=8), semicompacta (NAsc, n=8) e compacta (NAc, n=168) apresentaram maior diâmetro de 33 ± 1,6; 36 ± 0,4 e 22 ± 0,3 m, e ASS (área de silhueta somática) média de 462 ± 39,6; 503 ± 28,7 e 248 ± 7,3 m2 , respectivamente. Na formação NAc foi observada ampla heterogeneidade de neurônios. O traçador CTb identificou neurônios autonômicos da NAc que apresentaram marcação anti-Nav1.7 somática e em prováveis segmentos iniciais do axônio (AIS). Foi observada expressão de Nav1.6 em AIS de neurônios das NAc, NAsc e NAl, e tanto na NAl quanto na NAc foi observada correlação positiva entre a ASS e a extensão de marcação anti-Nav1.6 no AIS. Entre os neurônios Nav1.6 positivos, estão incluídos os motoneurônios que inervam a laringe, visto que também expressaram o fator ATF-3 após a ressecção do RLN. Foi observada também a expressão do canal Nav1.2 em prováveis dendritos de neurônios situados na NAc. Nos neurônios do DMV foi observada apenas a expressão do canal Nav1.7 no soma e possíveis AIS. Os resultados sugerem que neurônios motores do NA que inervam músculos branquioméricos utilizam o canal Nav1.6 para geração do potencial de ação, enquanto neurônios motores autonômicos parecem depender da atividade do canal Nav1.7. | pt_BR |
dc.description.abstract | The nucleus ambiguus (NA) is a collection of neurons distributed ventrolaterally in the reticular formation of medulla that projects through special visceral efferent fibers to pharynx, larynx, esophagus or through general visceral efferent fibers to lung and heart. Dorsal motor nucleus of the vagus (DMV) contains autonomic neurons located dorsomedially in the medulla that send general visceral fibers mainly to abdominal viscera such as the stomach, liver, pancreas and intestines. The aim of this study was to evaluate the expression of voltage-gated sodium channels (Nav) and their subcellular location in neurons of different formations of NA and DMV. Wistar rats of 30 days were perfused transcardially and double or triple immunofluorescence staining was performed in 25 to 40 m coronal section of medulla. The identification of the NA formations was made through the analysis of immunofluorescence against choline acetyltransferase (ChAT). Experiments with retrograde tracer cholera toxin conjugated to Alexa Fluor 488 (CTb) applied to the lung parenchyma or the expression of neuronal injury marker ATF-3, after recurrent laryngeal nerve resection (RLN), were also used to identify neurons in the NA. Neurons in the loose formation (NAl, n=8), semi-compact (NAsc, n=8) and compact (NAc, n=168) had major diameter of 33 ± 1.6; 36 ± 0.4 and 22 ± 0.3 m, and somatic silhouette area (SSA) average of 462 ± 39.6; 503 ± 28.7 and 248 ± 7.3 m2 , respectively. Within NAc formation was observed extensive heterogeneity of neurons. The retrograde tracer CTb identified autonomic neurons in the NAc that showed anti-Nav1.7 staining at soma and presumed axon initial segments (AIS). Nav1.6 expression was observed in AIS of neurons within NAc, NAsc and NAl, and both NAL and NAc showed positive correlation between SSA and the extent of anti-Nav1.6 labeling along the AIS. Among the Nav1.6 positive neurons those that innervate the larynx are included, based on ATF-3 expression after resection of RLN. We also observed Nav1.2 staining in presumed dendrites of NAc neurons. At the neurons of the DMV an anti-Nav1.7 staining was observed at the soma and AIS. The results suggest that motoneurons of NA that innervate branchiomeric muscles use Nav1.6 channel isoform to generate the action potential whereas autonomic motoneurons seems to depend on the activity of Nav1.7 channels. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.format | application/pdf | * |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal do Triângulo Mineiro | pt_BR |
dc.publisher.department | Pró-Reitoria de Pesquisa e Pós-Graduação | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.initials | UFTM | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | pt_BR |
dc.relation.references | Abdulla FA, Smith PA. Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy. J Neurophysiol 88(5):2518-29, 2002. Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, Meijer IA, Meury L, Mills T, Moody A, Morinville A, Morten J, O’Donnel D, Raynoschek C, Salter H, Rouleau GA, Krupp JJ. A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 16(17):2114-21, 2007. Ahn H, Black JA, Zhao P, Tyrrell L, Waxman SG, Dib-Hajj SD. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons. Mol Pain 7:32, 2011. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessel IP, Tate S, Green PJ, Woolf CJ. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26(50):12852-60, 2006. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, Mcmahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN. The tetrodotoxinresistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541-8, 1999. Altschuler SM, Bao XM, Miselis RR. Dendritic architecture of nucleus ambiguous motoneurons projecting to the upper alimentary tract in the rat. J Comp Neurol 309(3):402-14, 1991. Altschuler SM, Ferenci DA, Lynn RB, Miselis RR. Representation of the cecum in the lateral dorsal motor nucleus of the vagus nerve and commissural subnucleus of the nucleus tractus solitarii in rat. J Comp Neurol 304(2):261-74, 1991. Bao X, Wiedner EB, Altschuler SM. Transsynaptic localization of pharyngeal premotor neurons in rat. Brain Research 696(1-2):246-9, 1995. Baroni D, Moran O. Molecular differential expression of voltage-gated sodium channel a and b subunit mRNAs in five different mammalian cell lines. J Bioenerg Biomembr 43(6):729-38, 2011. Beckh S, Noda M, Lübbert H, Numa S. Differential regulation of three sodium channel Messenger RNAs in the rat central nervous system during development. EMBO J 8(12):3611-6, 1989. Beech RD, Cleary MA, Treolar HB, Eisch AJ, Harrist AV, Zhong W, Greer CA, Duman RS, Picciotto MR. Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J Comp Neurol 475(1):128-41, 2004. Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84-91, 1997. Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262(4):546-62, 1987. Black JA, Waxman SG, Smith KJ. Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Nav1.2 at nodes of Ranvier. Brain 129: 1319-29, 2006. Blankenship ML, Coyle DE, Baccei ML. Transcriptional expression of voltage-gated Na+ and voltage-independent K+ channels in the developing rat superficial dorsal horn. Neuroscience 231:305-14, 2013. Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 2003, 23(6): 2306-13. Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med 108(Suppl 4a):79S-86S, 2000. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. Sdium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A 97(10):5616-20, 2000. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26(1):13-25, 2000. Catteral WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397-409, 2005. Cheng Z, Powley TL, Schwaber JS, Doyle FJ III. Projections of the dorsal motor nucleus of the vagus to cardiac ganglia of rat atria: an anterograde tracing study. J Comp Neurol 410:320-41, 1999. Cheng Z, Powley TL. Nucleus ambiguous projections to cardiac ganglia rat atria: an anterograde tracing study. J Comp Neurol 424:588-606, 2000. Clark BD, Goldberg EM, Rudy B. Eletrogenic tuning of the axon initial segment. Neuroscientist 15(6): 651-68, 2009. Corbett EKA, Saha S, Deuchars J, McWilliam PN, Batten TFC. Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurons projecting to the rat heart. Autonomic Neurosci 105(2):105-117 2003 Console-Bram LM, Fitzpatrick-McElligott SG, Mc-Elligott JG. Distribution of GAP-43 mRNA in the immature and adult cerebellum: a role for GAP-43 in cerebellar development and neuroplasticity. Brain Research 95(1):97-106, 1996. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121):894-8, 2006. Cummins TR, Howe JR, Waxman SG. Slow closed-state inactivation: a novel mechanis, underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18(23):9607-19, 1998. Dennison SJ, Merritt VE, Aprison MH, Felten DL. Redefinition of the location of the dorsal (motor) nucleus of the vagus in the rat. Brain Res Bull 6(1):77-81, 1981. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci 30(11):555-63, 2007. Dustrude ET, Wilson SM, Ju W, Xiao Y, Khanna R. CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking. J Biol Chem 288(34):24316-31, 2013. Estacion M, Yang Y, Dib-Hajj SD, Tyrrel L, Lin Z, Yang Y, Waxman SG. A new Nav1.7 mutation in an erythromelalgia patient. Biochem Biophys Res Commun 432(1):99-104, 2013. Faber CG, Hoejimakers JG, Ahn HS, Cheng X, Han C, Choi S, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JP, Waxman SG, Merkies IS. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26- 39, 2012. Felts PA, Yokohama S, Dib-Hajj S, Black JA, Waxman SG. Sodium channel -subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1) different expression patterns in developing rat nervous system. Mol Brain Res 45(1):71-82, 1997. Flake NM, Lancaster E, Weinreich D, Gold MS. Absence of an association between axotomy-induced changes in sodium currents and excitability in DRG neurons from the adult rat. Pain 109(3):471-80. Flumerfelt BA, Kiernan JA, Krcek JP, Sholdice J. Reinnervation of skeletal muscle in the tongue by preganglionic parasympathetic vagal neurons. J Anat 146:117-30, 1986. Fontán JJ, Diec CT, Velloff CR. Bilateral distribution of vagal motor and sensory nerve fibers in the rat’s lungs and airways. Am J Physiol Regul Integr Comp Physiol 279(2):R713-28, 2000. Ford TW, Bennett JA, Kidd C, McWilliam PN. Neurones in the dorsal motor vagal nucleus of the cat with non-myelinated axons projecting to the heart and lungs. Exp Physiol 75(4):459-73, 1990. Fox EA, Powley TL. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Research 341(2):269-282, 1985. Fryscak T, Zenker W, Kantner D. Afferent and efferent innervation of the rat esophagus. Anat Embryol 170(1):63-70, 1984. Fukuoka T, Noguchi K. Comparative study of voltage-gated sodium channel a-subunits in non-overlapping four neuronal populations in the rat dorsal root ganglion. Neurosci Res 70(2):164-71, 2011. Gasser A, Ho TS, Cheng X, Chang KJ, Waxman SG, Rasband MN, Dib-Hajj SD. An ankyrin-G-binding motif is necessary and suddicient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J Neurosci 32(21):7232-43, 2012. Gautron L, Sakata I, Udit S, ZIgman JM, Wood JN, Elmquist JK. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 519(15):3085-101, 2011. Geis GS, Wurster RD. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Research 182(1):19-30, 1980. Gellens ME, George AL Jr, Chen LQ, Chanine M, Horn R, Barchi RL, Kallen RG. Primary structure and functional expression of the human cardiac tetrodotoxininsensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 89(2):554-8, 1992. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR. Clin Genet 71(4):311-9, 2007. Goldin AL, BArchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 28(2):365-8, 2000. Hille B. Ion channels of excitable membranes 3ª ed. Sunderland: Sinauer associates 2001. Hadziefendic S, Haxhiu MA. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labeling study using pseudorabies virus. J Auton Nerv Syst 76(2-3):135-45, 1999. Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol 222:560-577, 1984. Haxhiu MA, Jansen ASP, Cherniack NS, Lowey AD. CNS innervation of airwayrelated parasympathetic preganglionic neurons: a transneuronal labeling study using pseudorabies virus. Brain Research 618(1):115-34, 1993. Haxhiu MA, Loewy AD. Central connections of the motor and sensory vagal systems innervating the trachea. J Auton Nerv Syst 57(1-2):49-56, 1996. Hedstrom KL, Ogawa Y, Rasband MN. Ankyrin-G is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 183(4):635-40, 2007. Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551(Pt 3):741-50, 2003. Ho C, O’Leary ME. Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46(1):159-66, 2011. Ho C, Zhao J, Malinowski S, Chahine M, O’Leary ME. Differential expression of sodium channel subunits in dorsal root ganglion sensory neurons. J Biol Chem 287(18):15044-53, 2012. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5(12):3310-28, 1985. Hodgdon KE, Hingtgen CM, Nicol GD. Dorsal root ganglia isolated from Nf1+/- mice exhibit increased levels of mRNA expression of voltage-dependent sodium channels. Neuroscience 206:237-44, 2012 Holst MC, Kelly JB, Powley TL. Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 381(1):81-100, 1997. Hydman J, Svensson M, Kuylenstierna R, Ohlsson M, Mattsson P. Neuronal survival and glial reactions after recurrent laryngeal nerve resection in the rat. Laryngoscope 115(4):619-24, 2005. Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12(8):99- 1002, 2009. Irnaten M, Wang J, Mendelowitz D. Firing properties of superior laryngeal neurons in the nucleus ambiguus in the rat. Neurosci Lett 303(1):1-4, 2001. Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurons in the rat: immunocytochemical evidence of synaptic inputs containing 5- hydroxytryptamine. J Comp Neurol 327(4):572-83, 1993. Jarnot M, Corbett AM. Immunolocalization of Nav1.2 channel subtypes in rat and cat brain and spinal cord with high affinity antibodies. Brain Research 1107(1):1-12, 2006. Jarvinen MK, Powley TL. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy. J Comp Neurol 403(3):359-77, 1999. Jenkins SM, Bennet V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 155(5):739-46, 2001. Jenkins SM, Bennett V. Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc Natl Acad Sci U S A 99(4):2303-8, 2002. Jiang C, Cummins TR, Haddad GG. Membrane ionic currents and properties of freshly dissociated rat brainstem neurons. Exp Brain Res 100(3):407-20. Jones JFX, Wang Y, Jordan D. Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats and rabbits. J Physiol 489:203-214, 1995. Jones JFX, Wang Y, Jordan D. Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol 507(3):869-880, 1998. Jordan D. Central nervous pathways and control of the airways. Respir Physiol 125(1- 2):67-81, 2001. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193(2):467-508, 1980 Kalia M. Brain stem localization of vagal preganglionic neurons. J Auton Nerv Syst 3(2- 4):451-81, 1981. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211(3):248-65, 1982. Kandel ER, Schwartz JH, Jessel TM. Principles of neural science: Brain stem, reflexive behavior, and cranial nerves. 4a ed. New York City: McGraw-Hill Companies, 2000. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11(2):178-86, 2008. Kole MH, Stuart GJ. Signal processing in the axon initial segment. Neuron 73(2):235- 47, 2012. Kohn AZ, Hoxha KV, Martin RJ, Haxhiu MA, Wilson CG, Mayer CA, Kc P. Developmental changes in the brainstem neurons regulating lower airway caliber. Pediatr Res 65(5):509-13, 2009. Krzemien DM, Schaller KL, Levinson SR, Caldwell JH. Immunolocalization of sodium channel isoform NaCh6 in the nervous system. J Comp Neurol 420(1):70-83, 2000. Lawn AM. The localization, in the nucleus ambiguous of the rabbit, of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration. J Comp Neurol 127(2):293-306, 1966. Lee BH, Lynn RB, Lee HS, Miselis RR, Altchuler SM. Calcitonin gene-related peptide in nucleus ambiguus motoneurons in rat: viscerotopic organization. J Comp Neurol 320(4):531-43, 1992. Lewis PR, Scott JA, Navaratnam V. Localization in the dorsal motor nucleus of the vagus in the rat. J Anat 107(Pt2):197-208, 1970. Liang L, Fan L, Tao B, Yaster M, Tao YX. Protein kinase C/Akt is required for complete Freund’s adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons. J Pain 14(6):638-47, 2013. Liao Z, Li ZS, Lu Y, Wang WZ. Microinjection of exogenous somatostatin in the dorsal vagal complex inhibits pancreatic secretion via somatostatin receptor-2 in rats. Am J Physiol Gastrointest Liver Physiol 292(3):G746-52, 2007. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 28(53):14329-40, 2008. Loewy AD, Franklin MF, Haxhiu MA. CNS monoamine cell groups projecting to pancreatic vagal motor neurons: a transneuronal labeling study using pseudorabies virus. Brain Res 638(1-2):248-60, 1994. McAllen RM, Spyer KM. The origin of cardiac vagal efferent neurons in the medulla of the cat. J Physiol 244(1):82P-83P, 1975. McAllen RM, Spyer KM. The location of cardiac vagal preganglionic motoneurons in the medulla of the cat. J Physiol 258(1):187-204, 1978. McLean JH, Hopkins DA. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. J Comp Neurol 195(1):157-75, 1981. Meisler MH, Kearney J, Escayg A, MacDonald BT, Sprunger LK. Sodium channel and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7(2):136-45, 2001. Mendelowitz D. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am J Physiol 271(6 Pt 2):H2609-14, 1996. Mihalevich M, Neff RA, Mendelowitz D. Voltage-gated currents in identified parasympathetic cardiac neurons in the nucleus ambiguus. Brain Research 739(1- 2):258-62, 1996. Morgan CW. Axons of sacral preganglionic neurons in the cat: I. Origin, initial segment, and myelination. J Neurocytol 30(6):523-44. Morrison LF. Recurrent laryngeal nerve paralysis: a revised conception based on the dissection of one hundred cadavers. Ann Otol Rhinol Laryngol 61(2):567-92, 1952. Morinville A, Fundin B, Meury L, Juréus A, Sandberg K, Krupp J, Ahmad S, O’Donnel D. Distribution of the voltage-gated sodium channel Na(v)1.7 in the rat: expression in the autonomic and endocrine systems. J Comp Neurol 504(6):680-9, 2007. Mukai M, Sakuma Y, Suzuki M, Orita S, Yamauchi K, Inoue G, Aoki Y, Ishikawa T, Miyagi M, Kamoda H, Kubota G, Oikawa Y, Inage K, Sainoh T, Sato J, Nakamura J, Takaso M, Toyone T, Takahashi K, Ohtori S. Evaluation of behavior and expression of Nav1.7 in dorsal root ganglia after sciatic nerve compression and application of nucleus pulposus in rats. Eur Spine J 23(2):463-8, 2014. Muroi Y, Ru F, Kollarik M, Canning BJ, Hughes SA, Walsh S, Sigg M, Carr MJ, Undem BJ. Selective silencing of Na(v)1.7 descreases excitability and conduction in vagal sensory neurons. J Physiol 589(Pt 23):5663-76, 2011. Narahashi T. Tetrodotoxin: a brief history. Proc Jpn Acad Ser B Phys Biol Sci 84(5):147-54, 2008. Nosaka S, Yamamoto T, Yasunaga K. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol 186(1):79-92, 1979. Ogawa Y, Rasband MN. The functional organization and assembly of the axon initial segment. Curr Opin Neurobiol 18(3):307-13, 2008. Osorio N, Alcaraz G, Padilla F, Coste B, Delmas P, Crest M. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J Physiol 569, 801–816, 2005. Osorio N, Cathala L, Meisler MH, Crest M, Magistretti J, Delmas P. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J Physiol 588.4 pp 651–669, 2010. Palay SL, Sotelo C, Peters A, Orkand PM. The axon hillock and the initial segment. J Cell Biol 38:193-200, 1968. Pan Z, Kao T, Horvath Z, Lemos J, Sul J-Y, Cranstoun SD, Bennett MV, Scherer SS & Cooper EC. A common ankyrin-G-based mechanism retains KCNQ and Nav channels at electrically active domains of the axon. J Neurosci 2006, 26, 2599-2613. Pascual-Font A, Hernández-Morato I, McHanwell S, Vázquez T, Maranillo E, Sañudo J, Valderrama-Canales J. The central projections of the laryngeal nerves in the rat. J Anat 219(2):217-228, 2011. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5ª ed. San Diego: Elsevier Academic Press; 2005. Pérez Fontán JJ, Diec CT, Velloff R. Bilateral distribution of vagal motor and sensory nerve fibers in the rat’s lungs and airways. Am J Physiol 279:713-28, 2000. Qu R, Tao J, Wang Y, Zhou Y, Wu G, Xiao Y, Hu CY, Jiang X, Xu GY. Neonatal colonic inflammation sensitizes voltage0gated Na(+) channels via upregulation of cystathionine b-synthetase expression in rat primary sensory neurons. Am J Physiol 304(9):G763-72, 2013. Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H. Role of Axonal NaV1.6 Sodium Channels in Action Potential Initiation of CA1 Pyramidal Neurons. J Neurophysiol 100(4):2361-80, 2008. Ruggiero DA, Giuliano R, Anwar M, Stornetta R, Reis DJ. Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol 292(1):1-53, 1990. Sadamasu A, Sakuma Y, Orita S, Yamauchi K, Inoue G, Aoki Y, Ishikawa T, Myiagi M, Kamoda H, Kubota G, Oikawa Y, Inage K, Sainoh T, Sato J, Nakamura J, Toyone T, Takahashi K, Ohtori S. Upregulation of Nav1.7 in dorsal root ganglia after intervertebral disc injury in rats. Spine (Phila Pa 1976) 39(7):E421-6, 2014. Sah P, MacLachlan EM. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68(5):1834-41, 1992. Sasaki CT (2006) Anatomy and development and physiology of the larynx. [Online]. Raj Goyal and Reza Shaker: GI Motility online. Available at: http://www.nature.com/gimo/contents/pt1/full/gimo7.html Schaller KL, Caldwell JH. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2(1):2-9, 2003. Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol 238(4):473-88, 1985. Takaoka T, Shiotani A, Saito K, Tomifuji M, Mori Y, Fujimine T, Okano H, Ogawa K. Neuronal re-juvenilization in the nucleus ambiguous after vagal nerve injury. Neurosci Res 65(4):353-9, 2009. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, Wolf JJ, Silos-Santiago I, Halegoua S, Mandel G. Identification of PN1, a predominant voltagegated sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A 94(4):1527-32, 1997. Van Wart A, Trimmer JS, Matthews G. Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol 500(2):339-52, 2007. Wang Y, Duan JH, Hingtgen CM, Nicol GD. Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/- mice. J Neurophysiol 103(4):2085-94, 2010. Yarom Y, Sugimori M, Llinás R. Ionic currents and firing patterns of mammaliam vagal motoneurons in vitro. Neuroscience 16(4):358-62, 1985. Yu FH, Catterall WA. The VGL-Chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 253: re15, 2004. YuanJ, Matsuura E, Higuchi Y, Nakamura T, Nozuma S, Sakiyama Y, Yoshimura A, Izumo S, Takashima H. Hereditary sensory and autonomic neuropathy type IID caused by na SCN9A mutation. Neurology 80(18):1641-9, 2013. | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | NAO TEM | pt_BR |
dc.subject.cnpq | NAO TEM | pt_BR |
dc.title | Imunolocalização de canais para sódio voltagem-dependentes em neurônios dos núcleos ambíguo e dorsal motor do vago | pt_BR |
dc.type | Dissertação | pt_BR |
Aparece nas coleções: | Programa de Pós-Graduação em Ciências Fisiológicas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissert Lívia A Martins.pdf | Dissert Lívia A Martins | 2,55 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons