Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Mestrado Profissional em Inovações e Tecnologias
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/245
Registro completo de metadados
Campo DCValorIdioma
dc.creatorARAÚJO, Karla Santos de-
dc.creator.ID71793305153por
dc.creator.Latteshttp://lattes.cnpq.br/8690700270061413por
dc.contributor.advisor1MALPASS, Geoffroy Roger Pointer-
dc.contributor.advisor1ID22323530879por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4326102798287137por
dc.date.accessioned2016-06-29T14:39:44Z-
dc.date.issued2016-03-07-
dc.identifier.citationARAÚJO, Karla Santos de. Estudo do Processo Sonoeletroquímico Fotoassistido para degradação da Atrazina. 2016. 97. Dissertação (Mestrado em Inovação Tecnológica) - Programa de Mestrado Profissional em Inovação Tecnológica, Universidade Federal do Triângulo Mineiro, Uberaba, 2016 .por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/245-
dc.description.resumoA contaminação de águas por pesticidas presentes em efluentes de atividades industriais e agrícolas acarreta grandes impactos ambientais, sendo imprescindível o desenvolvimento de tecnologias de tratamento desses efluentes. Nesse trabalho, aplicou-se uma combinação de três técnicas: eletroquímica, fotoquímica e sonoquímica, chamada sonoeletroquímica fotoassistida, na degradação do pesticida atrazina. Para isso, o sistema foi montado utilizandose uma célula eletroquímica de bancada em fluxo, eletrodo de trabalho Ti/Ru0,3Ti0,7O2, contraeletrodo de Ti e eletrólito suporte NaCl. Definidas as variáveis, corrente elétrica, concentração de NaCl, espaçamento entre eletrodos, aplicou-se o planejamento experimental em termos de eficiência energética. Escolheu-se o sistema eletroquímico para execução desse planejamento, pois foi necessário quantificar as espécies de cloro nesse estudo. Assim, obteve-se as variáveis mais significativas e determinou-se as condições ótimas do processo para realização dos ensaios de degradação. Nos ensaios de degradação fotoquímicos, a irradiação ultravioleta (UV) foi aplicada por uma fonte luminosa de radiação UV, e nos sonoquímicos, a energia ultrassônica foi fornecida por meio de um banho ultrassom. Os ensaios de degradação foram monitorados por espectroscopia UV-vis, carbono orgânico total (COT), cromatografia líquida de alta eficiência (CLAE) e fitotoxicidade, e avaliou-se a eficiência energética do processo. Pelo planejamento experimental as variáveis mais significativas foram a concentração de NaCl e o espaçamento entre eletrodos, e obteve-se as condições ótimas do processo, sendo 1,73 mol L-1 e 0,56 cm, respectivamente. A corrente elétrica foi mantida constante, em 0,20 A. O processo sonoeletroquímico fotoassistido promoveu uma maior geração de espécies altamente oxidantes, permitindo uma eficaz degradação de atrazina, alcançando uma remoção de COT de aproximadamente 98%. Pela análise de CLAE infere-se que esse processo resultou em uma remoção de atrazina de aproximadamente 100%, e os cromatogramas obtidos revelaram a formação de produtos de degradação. Além disso, a combinação das três técnicas apresentou uma maior eficiência de corrente e menor consumo energético. Os testes de fitotoxicidade demostraram que não houve a geração de produtos de degradação tóxicos ao organismo-teste (Lactuca sativa). Os resultados indicaram que o processo sonoeletroquímico fotoassistido, proposto pelo presente estudo, pode ser aplicado na degradação do pesticida atrazina como um tratamento eficaz e apropriado.por
dc.description.abstractContamination of water by pesticides present in effluents from industrial and agricultural activities causes major environmental impacts, and the development of treatment technologies for these effluents is essential. In this study, a combination of three techniques we applied: electrochemical, photochemical and sonochemical - denominated photoassisted sonoelectrochemical degradation, for the degradation of the pesticide atrazine. For this purpose, the system was assembled using a bench scale electrochemical cell with continuous flow, the working electrode was Ti/Ru0,3Ti0,7O2, plate the counter electrode a Ti plate and the supporting electrolyte NaCl. The variables were defined as applied, electric current, NaCl concentration, inter-electrode spacing, applied the experimental design in terms of energy efficiency. The electrochemical system was chosen for implementation of this design, because it was necessary to quantify the species of chlorine in this study. Thus, the most significant variables of the process were obtained and the optimum process conditions were determined to carry out the degradation assays. In photochemical degradation, the irradiation was applied by an ultraviolet light source. For sonochemical treatment, the ultrasonic energy was provided by means of a ultrasound bath. The degradation experiments were monitored by UV-vis spectroscopy, TOC, HPLC and phytotoxicity, and the energy efficiency of the process was evaluated. From the experimental design the most significant variables were the NaCl concentration and the spacing between electrode, and the optimum conditions obtained were and 1.73 mol L-1 and 0.56 cm, respectively. The electric current was kept constant at 0.20 A. The photoassisted sonoelectrochemical degradation process promoted greater generation of highly oxidizing species, allowing for efficient degradation of atrazine, achieving TOC removal of approximately 98%. For the HPLC analysis it is inferred that this process resulted in a removal of atrazine of ~ 100%, and the obtained chromatograms revealed the formation of degradation products. Furthermore, the combination of three techniques showed a higher current efficiency and lower energy consumption. Phytotoxicity tests showed that there was no generation of toxic degradation products using the test organism Lactuca sativa. The results indicated that the photoassisted sonoelectrochemical process proposed by this study can be applied to the degradation of atrazine as an effective and appropriate treatment.eng
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.description.sponsorshipFundação de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIGpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/1128/Dissert%20Karla%20S%20Ara%c3%bajo.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências Tecnológicas e Exatas - ICTE::Programa de Mestrado Profissional em Inovação Tecnológicapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Mestrado Profissional em Inovação Tecnológicapor
dc.relation.referencesAPHA/AWWA/WEF. Standard Methods of the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C., 2005. ADEWUYI, Y. G. Sonochemistry: Environmental science and engineering applications. Industrial & Engineering Chemistry Research, v. 40, p. 4681-4715, 2001. ADEWUYI, Y. G. Sonochemistry in environmental remediation 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environmental Science & Technology, v. 39, p. 3409-3420, 2005. AKDOGAN, A.; DIVRIKLI, U.; ELCI, L. Determination of triazine herbicides and metabolites by solid phase extraction with HPLC analysis. Analytical Letters, v. 46, p. 2464-2477, 2013. ALEBOYEH, A.; OLYA, M.E.; ALEBOYEH H. Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, v. 137, p. 518, 2008. ALVES, P. A.; JOHANSEN, H. D.; NETO, S. A.; ANDRADE, A. R.; MOTHEO, A. J.; MALPASS, G. R. P. Photo-assisted electrochemical degradation of textile effluent to reduce organic halide (AOX) production. Water Air Soil Pollut, v. 225, p. 2144, 2014. ALVES, P. A.; MALPASS, G. R. P.; JOHANSEN, H. D.; AZEVEDO, E. B.; GOMES, L. M.; VILELA, W. F. D.; MOTHEO, A. J. Photo-assisted electrochemical degradation of real textile wastewater. Water Science and Technology, v. 61, p. 491-498, 2010. ANTONIN, V. S. Degradação do complexo EDTA-Cu(II) por processos eletroquímicos avançados. 2012. Dissertação de Mestrado, Universidade federal do ABC – Santo André. AZBAR, N.; YONAR, T.; KESTIOGLU, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from polyester and acetate fiber dyeing effluent. Chemosphere, v. 55, n. 1, p. 35-43, 2004. BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria, 4ª Ed. Porto Alegre: Bookman, 2010. 414 p. BEZERRA, A.M.; SANTELLI, R.E.; OLIVEIRA, E.P.; VILLAR, L.S.; ESCALEIRA, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, v. 76, p. 965, 2008. BAIRD, C.; CANN, M. Química Ambiental. Produtos Orgânicos Tóxicos. 4ª Ed. Bookman. 2011. BLUME, T.; NEIS, U. Improved wastewater disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, v. 11, p. 333-336, 2004. BRASIL. Lei nº 7.802, de 11 de julho de 1989. Dispõe sobre a pesquisa, a experimentação, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. Diário Oficial da República Federativa do Brasil. Brasília, DF, 12 jul. 1989. BRETT, C. Sonoelectrochemistry. Piezoelectric transducers and applications. Heidelberg: Springer, 2008. BRILLAS, E.; SIRES, I.; OTURAN, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, v. 109, p. 6570-6631, 2009. BRINGAS, E.; SAIZ, J.; ORTIZ, I. Kinetics of ultrasound-enhanced electrochemical oxidation of diuron on boron-doped diamond electrodes. Chemical Engineering Journal, v. 172, p. 1016-1022, 2011. CATANHO M.; MALPASS, G.R.P.; MOTHEO, A.J. Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Applied Catalysis B: Environmental, v. 62, p. 193, 2006. CHAKINALA, A. G.; GOGATE, P. R.; BURGESS, A. E.; BREMNER, D. H. Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chemical Engineering Journal, p. 498-502, 2009. CONAMA. CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução Nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília. 2005. p. 27. CONAMA. CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução Nº 430, de 13 de maio de 2011. Dispõe sobre condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Brasília. 2011. p. 89. COSTA, C. R.; OLIVI, P.; BOTTA, C. M. R.; ESPINDOLA, E. L. G. A toxicidade em ambientes aquáticos: discussão e métodos de avaliação, Química Nova, v. 31, p. 2008, 2008. DEBORDE, M.; VON GUNTEN, U. Reactions of chlorine with inorganic and organic compounds during water treatment – Kinetics and mechanisms: A critical review. Water Research, v. 42, p. 13-51, 2008. DEZOTTI, M. Processos e técnicas para o controle ambiental de efluentes líquidos. E-papers Serviços Editoriais Ltda, 2008. ESCLAPEZ, M. D.; SÁEZ, V.; MILÁN-YÁÑEZ, D.; TUDELA, I.; LOUISNARD, O.; GONZÁLEZ-GARCÍA, J. Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrasonics Sonochemistry, v. 17, p. 1010-1020, 2010. FAO. Food and Agricultural Organisation of the United Nations. Pesticide Disposal Series N. 9. Disponível em: <http://www.fao.org/docrep/003/x8639e/x8639e00.htm>. Acesso em: nov/2015. FLORES, R.; BLASS, G.; DOMINGUEZ, V. Soil remediation by an advanced oxidative method assisted with ultrasonic energy. Journal of Hazardous Materials, v. 140, p. 399-402, 2007. GARBELLINI, G. S.; SALAZAR-BANDA, G. R.; AVACA, L. A. Aplicação do ultra-som em sistemas eletroquímicos: Considerações teóricas e experimentais. Química Nova, v. 31, n. 1, p. 123-133, 2008. GARCÍA, M. Á.; SANTAEUFEMIA, M.; MELGAR, M. J. Triazine residues in raw milk and infant formulas from spanish northwest, by a diphasic dialysis extraction. Food and Chemical Toxicology, v. 50, n. 03-04, p. 503-510, 2012. GOMES, L; MIWA, D. W.; MALPASS, G. R. P.; MOTHEO, A. J. Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. Journal of the Brazilian Chemical Society, vol. 22, n 7, 2011. HAMILTON, M. A.; RUSSO, R. C.; THURSTON, R. V. Trimmed Spearman-Karmer method for estimating lethal concentrations in toxicity bioassays. Environmental Science and Technology, v. 11, n. 7, p. 714-719, 1977. HAYES, W. J. Handbook of Pesticide Toxicology, Academic Press, New York, 1991. HE, Z.; SONG, S.; YING, H.; XU, L.; CHEN, J. p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrasonics Sonochemistry, v. 14, p. 568-574, 2007. JIANG, Y.; PETRIER, C.; WAITE, T. D. Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution. Ultrasonics Sonochemistry, v. 9, p. 163-168, 2002. JIN, J.; EL-DIN, M.G.; BOLTON, J.R. Assessment of the UV/Chlorine process as an advanced oxidation process. Water Research, v.45, p.1890-1896. 2011. JOYCE, E.; MASON, T. J.; PHULL, S. S.; LORIMER, J. P. The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspension. Ultrasonics Sonochemistry, v. 10, p. 231-234, 2003. KIDAK, R.; INCE, N. H. Ultrasonic destruction of phenol and substituted phenols: A review of current research. Ultrasonics Sonochemistry, v. 13, p. 195-199, 2006. KLIMA, J. Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement. Ultrasonics, v. 51, p. 202-209, 2011. KYLLONEN, H.; PIRKONEN, P.; NYSTROM, M. Membrane filtration enhanced by ultrasound – a review. Desalination, v. 181, p. 319-335, 2005. LIU, J.L.; LUO, H.J.; WEI C.H. Degradation of anthraquinone dyes by ozone. Transactions of Nonferrous Metals Society of China, v. 17, p. 880, 2007. MAHAMUNI, N.N.; ADEWUYI, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, v. 17, p. 990, 2010. MAHMOODI, N.M.; ARAMI, M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology B: Biology, v. 22, p. 20, 2009. MALPASS, G. R. P.; AQUINO NETO, S.; ANDRADE, A. R.; FORNAZARI, A. L. T.; MIWA, D. W.; MOTHEO, A. J. Desenvolvimento de Materiais Catalíticos para Degradação Fotoeletroquímica de Pesticidas. In: International Workshop. Advances in Cleaner Production, 3, 2011, São Paulo. MALPASS, G. R. P.; MIWA, D. W.; MACHADO, S. A. S.; MOTHEO, A. J. Decolourisation of real textile waste using electrochemical techniques: Effect of electrode composition. Journal of Hazardous Materials, v. 156, p. 170, 2010. MALPASS, G. R. P.; MIWA, D. W.; MACHADO, S. A. S.; OLIVI, P.; MOTHEO, A. J. Oxidation of the pesticide atrazine at DSA® electrodes. Journal of Hazardous Materials, v. 137, p. 565-572, 2006. MALPASS, G. R. P.; MIWA, D. W.; MIWA, A. C. P.; MACHADO, S. A. S.; MOTHEO, A. J. Photo-assisted electrochemical oxidation of atrazine on a commercial Ti/Ru0,3Ti0,7O2 DSA electrode. Environmental Science and Technology, v. 41, p. 7120-7125, 2007. MALPASS, G.R.P.; MIWA, D.W.; SANTOS, R.L.; VIEIRA, E.M.; MOTHEO, A.J. Unexpected toxicity decrease during photoelectrochemical degradation of atrazine with NaCl. Environmental Chemistry Letters, v. 10, p. 177, 2012. MARTINEZ-HUITLE, C. A.; ANDRADE L.S. Electrocatalysis in wastewater treatment: recent mechanism advances. Química Nova, v. 34, p. 850, 2010. MARTÍNEZ-HUITLE, C. A.; BRILLAS, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, v.87, p.105-145, 2009. MARTINEZ-HUITLE, C. A.; FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, v. 35, p. 1324, 2006. MARSELLI, B.; GARCIA-GOMEZ, J.; MICHAUD, P. A.; RODRIGO, M. A.; COMNINELLIS, C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, v.150, p. 79-83, 2003. MASON, T. J. Sonochemistry, Oxford University Press, New York, 2005. MASON, T. J. Sonochemistry and the environment – Providing a “green” link between chemistry, physics and engineering. Ultrasonics Sonochemistry, v. 14, p. 476-483, 2007. MASON, T. J.; BERNAL, V. S. An introduction to sonoelectrochemistry. In: POLLET B. G. (Ed.). Power ultrasound in electrochemistry: From versatile laboratory tool to engineering solution. West Sussex: John Wiley, v. 1, p. 1-20, 2012. MININNI, G.; SBRILLI, A.; GUERRIERO, E.; ROTATORI, M.. Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine. Chemosphere, v. 54, p.1337, 2004. MODIRSHAHLA, N.; BEHNAJADY, M.A.; GHANBARY F. Decolorization and mineralization of Cl Acid Yellow 23 by Fenton and photo-Fenton processes. Dyes and Pigments, v. 73, p. 305, 2007. MOREIRA, E. D. Tratamento eletroquímico e eletroquímico irradiado do corante vermelho de alizarina S. 2011. 144f. Dissertação (Mestrado – Área de Concentração: Físico-Química), Instituto de Química de São Carlos, Universidade de São Paulo, São Paulo, 2011. NEODO, S.; ROSESTOLATO, D.; FERRO, S.; DE BATTISTI, A. On the electrolysis of dilute chloride solutions: Influence of the electrode material on Faradaic efficiency for active chlorine, chlorate and perchlorate. Electrochimica Acta, v.80, p. 282-291, 2012. OLLER, I.; MALATO, S.; SÁNCHEZ-PÉREZ; J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination - a review. Science of the Total Environment, v. 409, p. 4141, 2011. ORTEGA, M. C.; MORENO, M. T.; ORDOVAS, J.; AGUADO, M. T. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Scientia Horticulturae, v. 66, n. 1-2, p. 125-132, 1996. PEREIRA, S. V. Degradação da atrazina pelo processo UV/H2O2 e Ozônio, identificação dos intermediários e avaliação da atividade estrogênica. 2011. 168f. Tese (Doutorado em Engenharia Química), Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2011. PIGNATELLO, J. J.; OLIVEROS, S. E.; MACKAY, A. Advanced oxidation processes of organic contaminant destruction based of the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, v. 36, p. 1-84, 2006. RAUF, M.A.; ASHRAF, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, v. 151, p. 10, 2009. REIS, R. F. B.; BEATI, A. G. F.; ROCHA, R. S.; ASSUMPÇÃO, M. H. M. T.; SANTOS, M. C.; BERTAZOLLI, R.; LANZA, M. R. V. Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in na electrochemical flow-by reactor. Industrial & Engineering Chemistry Research, v. 51, p. 649-654, 2011. REN, Y.Z.; WU, Z. L.; FRANKE, M.; BRAEUTIGAMA, P.; ONDRUSCHKA, B.; COMESKEY, D. J.; KING, P. M. Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrasonics Sonochemistry, v. 20, p. 715-721, 2013. RENEKER, J. Sonoelectrochemical synthesis of submicron metal powders. MS thesis. 2012. Massachusetts Institute of Technology. Cambridge, MA. RODRIGUES, L. C. D. A.; BARBOSA, S.; PAZIN, M.; MASELLI, B. S.; BEIJO, L. A.; KUMMROW, F. Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa, Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, p. 1099, 2013. ROSSI, D.; BELTRAMI, M. Sediment ecological risk assessment: in situ and laboratory toxicity testing of Lake Orta sediments. Chemosphere, v. 37, n. 14-15, p. 2885-2894, 1998. SÁEZ, V.; TUDELA, I.; ESCLAPEZ, M. D.; BONETE, P.; LOUISNARD, O.; GONZÁLEZGARCÍA, J. Sonoelectrochemical degradation of perchloroethylene in water: enhancement of the process by the absence of background electrolyte. Chemical Engineering Journal, v. 168, p. 649-655, 2011. SHU, Z.; LI, C.; BELOSEVIC, M.; BOLTON, J. R.; EL-DIN, M. G. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation. Environmental Science and Technology, v.48, p. 9692-9701, 2014. SIMÕES, M. S.; MANDAIL, R. H.; BARBOSA, S.; NOGUEIRA, M. L. Padronização de bioensaios para detecção de compostos alelopáticos e toxicantes ambientais utilizando alface. Biotemas, v. 26, n. 3, p. 29-36, 2013. SIRES, I.; BRILLAS, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environmental International, v. 40, 212-229, 2012. SOUZA, C. L.; PERALTA‐ZAMORA, P. Degradação redutiva de azocorantes utilizando‐se ferro metálico. Engenharia Sanitária e Ambiental, v. 11, n. 1, p. 16‐20, 2006. STETER, J. R.; BARROS, W. R. P.; LANZA, M. R. V.; MOTHEO, A. J. Electrochemical and sonoelectrochemical processes applied to amaranth dye degradation. Chemosphere, v. 117, p. 200-207, 2014a. STETER, J. R.; DIONISIO, D.; LANZA, M. R. V.; MOTHEO, A. J. Electrochemical and sonoelectrochemical processes applied to the degradation of the endocrine disruptor methyl paraben. Journal of Applied Electrochemistry, v. 44, p. 1317-1325, 2014b. STETER, J. R.; KOSSUGA, M. H.; MOTHEO, A. J. Mechanistic proposal for the electrochemical and sonoelectrochemical oxidation of thiram on a boron-doped diamond anode. Ultrasonics Sonochemistry, v. 28, p. 21-30, 2016. TRASATTI, S. Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, v. 45, p. 2377, 2000. TEZCANLI-GUYER, G.; INCE, N. H. Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrasonics Sonochemistry, v. 10, p. 235-240, 2003. TOR, A.; AYDIN, M. E.; OZCAN, S. Ultrasonic solvent extraction of organochlorine pesticides from soil. Analytica Chimica Acta, v. 559, p. 173-180, 2006. USEPA. United States Environmental Protection Agency. Pesticides. Disponível em: <http://www.epa.gov/pesticides>. Acesso em: nov/2015. VALENTIM, A. C. S.; DEZOTTI, M. Ensaios de toxicidade. In: DEZOTTI, M. (Ed.). Processos e técnicas para o controle ambiental de efluentes líquidos. Rio de Janeiro: Epapers, 2008. p. 309-360. WANG, J.L.; XU L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, v. 42, p. 251-325, 2012. WAYMENT, D. G.; CASADONTE, D. J. Frequency effect on the sonochemical remediation of alachlor. Ultrasonics Sonochemistry, v. 9, p. 251-257, 2002. WHO. World Health Organization. Chemistry and Specifications of Pesticides. Technical Report 899. Disponível em: <http://www.who.int/whopes/resources/resources_2001/en/>. Acesso em: nov/2015. WHO. World Health Organization. Guidelines for Drinking-water. Quality.Atrazine and Its Metabolites in Drinking-water, Geneve, 2011. YAQUB, A.; AJAB, H. Applications of sonoelectrochemistry in wastewater treatment system. Reviews in Chemical Engineering, v. 29, p. 123, 2013. YAQUB, A.; AJAB, H.; ISA, M. H.; JUSOH, H.; JUNAID, M. FAROOQ, R. Effect of ultrasound and electrode material on electrochemical treatment of industrial wastewater. Journal New Mater Electrochemical, v. 15, p. 365-372, 2012. YASMAN, Y.; BULATOV, V.; GRIDIN, V. V.; AGUR, S.; GALIL, N.; ARMON, R.; SCHECHTER, I. A new sono-electrochemical method for enhanced detoxification of hydrophilic chloroorganic pollutants in water. Ultrasonics Sonochemistry, v. 11, p. 365-372, 2004. YASMAN, Y.; BULATOV, V.; RABIN, I.; BINETTI, M.; SCHECHTER, I. Enhanced electro-catalytic degradation of chloroorganic compounds in the presence of ultrasound. Ultrasonics Sonochemistry, v. 13, p. 271-277, 2006. ZHANG, G.; ZHANG, P.; GAO, J.; CHEN, Y. Using acoustic cavitation to improve the bioactivity of activated sludge. Bioresource Technology, v. 99, p. 1497-1502, 2008.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectProcessos oxidativos avançadospor
dc.subjectDegradação de pesticidaspor
dc.subjectPlanejamento experimentalpor
dc.subjectEficiência energéticapor
dc.subjectAdvanced oxidation processeseng
dc.subjectDegradation pesticideseng
dc.subjectExperimental designeng
dc.subjectEnergy efficiencyeng
dc.subject.cnpqEngenharia Sanitária. Avançadas de Tratamento de Água.por
dc.titleEstudo do Processo Sonoeletroquímico Fotoassistido para degradação da Atrazinapor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Mestrado Profissional em Inovações e Tecnologias

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Karla S Araújo.pdfDissert Karla S Araújo2,74 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons