Use este identificador para citar ou linkar para este item:
http://bdtd.uftm.edu.br/handle/tede/335
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | COSTA, Tamires Marielem de Carvalho | - |
dc.creator.ID | 08282663603 | por |
dc.creator.Lattes | http://lattes.cnpq.br/2430887005991394 | por |
dc.contributor.advisor1 | OLIVEIRA, Carlo José Freire de | - |
dc.contributor.advisor1ID | 08736295744 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7006593564297649 | por |
dc.date.accessioned | 2016-08-01T14:51:24Z | - |
dc.date.issued | 2014-09-12 | - |
dc.identifier.citation | COSTA, Tamires Marielem de Carvalho. Efeitos imunossupressores da saliva de Amblyomma cajennense em células dendríticas derivadas de medula óssea murina. 2014. 47f. Dissertação (Mestrado em Ciências Fisiológicas) - Curso de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2014. | por |
dc.identifier.uri | http://bdtd.uftm.edu.br/handle/tede/335 | - |
dc.description.resumo | As células dendríticas (CDs) são células apresentadoras de antígenos profissionais com funções essenciais na ativação da imunidade do hospedeiro. Carrapatos são artrópodes hematófagos que secretam através da saliva, compostos bioativos com propriedades anti-hemostáticas e imunomoduladoras. Sabe-se que algumas espécies de carrapatos modulam a biologia de CDs com diferentes intensidades. No entanto, estudos com Amblyomma cajennense, ainda não foram desenvolvidos, embora esta espécie seja considerada uma das mais qualificadas para imunomodulação justamente por ser capaz de infestar diferentes hospedeiros. Neste trabalho, demonstrou-se que a adição de saliva de A. cajennense em células da medula óssea, inibe a diferenciação de CDs. Esta inibição não foi acompanhada por inibição ou indução de moléculas co- ou estimuladoras, tais como MHC-II, CD40, CD80 e CD86. CDs imaturas ou maduras pré-expostas à saliva mostraram redução da migração estimulada pelas quimiocinas RANTES e MIP-3β, respectivamente. Esta inibição foi mediada pela saliva, que reduziu significativamente a expressão dos receptores de quimiocina CCR5 ou CCR7. A saliva deste carrapato também inibiu, de forma concentração dependente, a produção das citocinas IL-12p40, IL-6 e TNF-α, enquanto potencializou a produção de IL-10 por CDs estimuladas pelo LPS – lipopolissacarídeo - ligante do receptor Toll-like 4 (TLR4). Além disso, a saliva foi capaz de inibir a expressão de CD40 e CD86 em CDs maduras, enquanto que, por si só, potencializou a expressão de PD-L1. A prostaglandina E2 foi detectada (~ 80 nM) como um dos constituintes da saliva e nós acreditamos que parte dos resultados obtidos neste trabalho são devido à presença desta molécula. Desta forma, estes resultados ajudam a compreender a interação carrapato-hospedeiro e exemplificar que os carrapatos da espécie A. cajennense parecem possuir mecanismos específicos para a modulação de células do sistema imunológico do hospedeiro, incluindo as CDs. | por |
dc.description.abstract | Dendritic cells (DCs) are professional antigen-presenting cells with essential roles in the activation of host immunity. Ticks are blood-sucking arthropods that secrete via saliva, bioactive compounds with immunomodulatory properties. It is known that some tick species modulate the biology of DCs with different intensities; however, studies with Amblyomma cajennense, the cayenne tick, have not yet been developed although this species is considered one of the most qualified for immunomodulation. In this work we demonstrated that the addition of A. cajennense tick saliva to bone marrow cells inhibits the differentiation to DCs. This inhibition was not accompanied by inhibition or induction of co- and stimulatory molecules MHC-II, CD40, CD80 and CD86. Immature or mature DCs pre-exposed to saliva showed reduced migration towards RANTES and MIP-3β chemokines, respectively. This inhibition was mediated by saliva which significantly reduced the expression of CCR5 or CCR7 chemokine receptors. Tick saliva also inhibited, in a concentration-dependent manner, IL-12p40, IL-6 and TNF-α while potentiating IL-10 cytokine production by DCs stimulated by Toll-like receptor-4 ligand. Additionally, the saliva was able to inhibit the expression of CD40 and CD86 in mature DCs while, per se, potentiating the expression of PD-L1. Prostaglandin-E2 was detected (~ 80 nM) as one of the constituents of saliva and we believe that some of the results obtained are due to their presence. Thus, these results help to understand the tick-host interaction and exemplify that ticks of the species A. cajennense seems to have particular mechanisms for modulation of host immune cells, including DCs. | eng |
dc.description.sponsorship | Fundação de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIG | por |
dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | por |
dc.description.sponsorship | Universidade Federal do Triângulo Mineiro - UFTM | por |
dc.format | application/pdf | * |
dc.thumbnail.url | http://bdtd.uftm.edu.br/retrieve/1663/Dissert%20Tamires%20M%20C%20Costa.pdf.jpg | * |
dc.language | por | por |
dc.publisher | Universidade Federal do Triângulo Mineiro | por |
dc.publisher.department | Instituto de Ciências da Saúde - ICS::Curso de Medicina | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFTM | por |
dc.publisher.program | Curso de Pós-Graduação em Ciências Fisiológicas - Parasitologia, Imunologia e Microbiologia | por |
dc.relation.references | ABATEPAULO, A. R. et al. Detection of SNPs in bovine immune-response genes that may mediate resistance to the cattle tick Rhipicephalus (Boophilus) microplus. Anim Genet, v. 39, n. 3, p. 328-329, Jun 2008. ALLEN, J. R.; KHALIL, H. M.; GRAHAM, J. E. The location of tick salivary antigens, complement and immunoglobulin in the skin of guinea-pigs infested with Dermacentor andersoni larvae. Immunology, v. 38, n. 3, p. 467-472, Nov 1979. AMINO, R.; TANAKA, A. S.; SCHENKMAN, S. Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol, v. 31, n. 4-5, p. 465-472, Mar 15 2001. ARAGÃO, H. B. Ixodidas brasileiros e de alguns paizes limitrophes. Mem Inst Oswaldo Cruz, v. 31, p. 759-843, 1936. ARTHUR, D. R. Ticks in Egypt in 1500 B.C.? Nature, v. 206, n. 988, p. 1060-1061, Jun 5 1965. ARTHUR, D. R. Host and tick relationships: a review. J Wildl Dis, v. 9, n. 1, p. 74-84, Jan 1973. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. Nature, v. 392, n. 6673, p. 245-252, Mar 19 1998. BEATI, L. et al. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol Biol, v. 13, p. 267, 2013. BENNETT, G. F. Boophilus microplus (acarina: ixodidae): experimental infestations on cattle restrained from grooming. Exp Parasitol, v. 26, n. 3, p. 323-328, Dec 1969. BERGMAN, D. K. et al. Isolation and molecular cloning of a secreted immunosuppressant protein from Dermacentor andersoni salivary gland. J Parasitol, v. 86, n. 3, p. 516-525, Jun 2000. BIZZARRO, B. et al. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology. Parasit Vectors, v. 6, p. 329, 2013. BOLTJES, A.; VAN WIJK, F. Human dendritic cell functional specialization in steady-state and inflammation. Front Immunol, v. 5, p. 131, 2014. BORGES, L. M. et al. Horse resistance to natural infestations of Anocentor nitens and Amblyomma cajennense (Acari: Ixodidae). Vet Parasitol, v. 104, n. 3, p. 265-273, Mar 20 2002. BORGES, L. M. et al. [Study of foveae dorsales of nymphs and adults of four species of ticks (Acari: Ixodidae) by scanning electron microscopy]. Rev Bras Parasitol Vet, v. 15, n. 3, p. 89-96, Jul-Sep 2006. BOWMAN A, N. P. Ticks: Biology, Disease and Control. Cambridge University Press, 2008. BRISENO, C. G.; MURPHY, T. L.; MURPHY, K. M. Complementary diversification of dendritic cells and innate lymphoid cells. Curr Opin Immunol, v. 29C, p. 69-78, Aug 2014. CARREGARO, V. et al. Nucleosides from Phlebotomus papatasi salivary gland ameliorate murine collagen-induced arthritis by impairing dendritic cell functions. J Immunol, v. 187, n. 8, p. 4347-4359, Oct 15 2011. CASTAGNOLLI, K. C. et al. Acquired resistance of horses to Amblyomma cajennense (Fabricius, 1787) ticks. Vet Parasitol, v. 117, n. 4, p. 271-283, Nov 28 2003. CASTAGNOLLI, K. C. et al. Effect of Amblyomma cajennense ticks on the immune response of BALB/c mice and horses. Ann N Y Acad Sci, v. 1149, p. 230-234, Dec 2008. CAVASSANI, K. A. et al. Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology, v. 114, n. 2, p. 235-245, Feb 2005. CHAMPAGNE, D. E.; NUSSENZVEIG, R. H.; RIBEIRO, J. M. Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. J Biol Chem, v. 270, n. 15, p. 8691-8695, Apr 14 1995. CHEN, L. F.; SEXTON, D. J. What's new in Rocky Mountain spotted fever? Infect Dis Clin North Am, v. 22, n. 3, p. 415-432, vii-viii, Sep 2008. CHENG, Y.; WU, H.; LI, D. An inhibitor selective for collagen-stimulated platelet aggregation from the salivary glands of hard tickHaemaphysalis longicornis and its mechanism of action. Sci China C Life Sci, v. 42, n. 5, p. 457-464, Oct 1999. CHISTIAKOV, D. A. et al. Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Front Physiol, v. 5, p. 196, 2014. CHMELAR, J. et al. Tick salivary secretion as a source of antihemostatics. J Proteomics, v. 75, n. 13, p. 3842-3854, Jul 16 2012. CRUVINEL WDE, M. et al. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol, v. 50, n. 4, p. 434-461, Jul-Aug 2010. DAI, J. et al. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent. PLoS Pathog, v. 6, n. 11, p. e1001205, 2010. DANTAS-TORRES, F. Rocky Mountain spotted fever. Lancet Infect Dis, v. 7, n. 11, p. 724-732, Nov 2007. DANTAS-TORRES, F.; CHOMEL, B. B.; OTRANTO, D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol, v. 28, n. 10, p. 437-446, Oct 2012. DE FREITAS, C. M. et al. Possible acquired resistance of dogs successively infested by Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) nymphs. Rev Bras Parasitol Vet, v. 18 Suppl 1, p. 40-42, Dec 2009. DE LEMOS, E. R. et al. Epidemiological aspects of the Brazilian spotted fever: seasonal activity of ticks collected in an endemic area in Sao Paulo, Brazil. Rev Soc Bras Med Trop, v. 30, n. 3, p. 181-185, May-Jun 1997a. DE LEMOS, E. R. et al. Rickettsiae-infected ticks in an endemic area of spotted fever in the State of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz, v. 92, n. 4, p. 477-481, Jul-Aug 1997b. DE TAEYE, S. W. et al. Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol, v. 29, n. 3, p. 119-128, Mar 2013. DERUAZ, M. et al. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med, v. 205, n. 9, p. 2019-2031, Sep 1 2008. DIAZ-MARTIN, V. et al. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol, v. 191, n. 3-4, p. 301-314, Jan 31 2013. DIEBOLD, S. S. Determination of T-cell fate by dendritic cells. Immunol Cell Biol, v. 86, n. 5, p. 389-397, Jul 2008. EVANS, D. E.; MARTINS, J. R.; GUGLIELMONE, A. A. A review of the ticks (Acari, ixodida) of Brazil, their hosts and geographic distribution - 1. The state of Rio Grande do Sul, southern Brazil. Mem Inst Oswaldo Cruz, v. 95, n. 4, p. 453-470, Jul-Aug 2000. FERREIRA, B. R.; SILVA, J. S. Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. Immunology, v. 96, n. 3, p. 434-439, Mar 1999. FERREIRA, B. R. et al. Antigens from Rhipicephalus sanguineus ticks elicit potent cell-mediated immune responses in resistant but not in susceptible animals. Vet Parasitol, v. 115, n. 1, p. 35-48, Jul 10 2003. FRANCISCHETTI, I. M. Platelet aggregation inhibitors from hematophagous animals. Toxicon, v. 56, n. 7, p. 1130-1144, Dec 15 2010. FRANCISCHETTI, I. M. et al. Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus. J Biol Chem, v. 275, n. 17, p. 12639-12650, Apr 28 2000. FRANCISCHETTI, I. M. et al. The role of saliva in tick feeding. Front Biosci (Landmark Ed), v. 14, p. 2051-2088, 2009. GERSTENBLITH, T. A.; STERN, T. A. Lyme Disease: A Review of Its Epidemiology, Evaluation, and Treatment. Psychosomatics, Apr 19 2014. GLADNEY, W. J. Mate-seeking by female Amblyomma maculatum (acarina: ixodidae) on a bovine. Nature, v. 232, n. 5310, p. 401-402, Aug 6 1971. GONCALVES, D. D. et al. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil). Braz J Microbiol, v. 44, n. 3, p. 883-887, 2013. GORDON, J. R.; ALLEN, J. R. Factors V and VII anticoagulant activities in the salivary glands of feeding Dermacentor andersoni ticks. J Parasitol, v. 77, n. 1, p. 167-170, Feb 1991. GRECA H., L. H., SOUZA L.C. . BRAZILIAN SPOTTED FEVER: A REEMERGENT ZOONOSIS. J. Venom. Anim. Toxins incl. Trop. Dis., v. V.14, p. p.3-18, 2008. GUEDES, E. et al. Detection of Rickettsia rickettsii in the tick Amblyomma cajennense in a new Brazilian spotted fever-endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz, v. 100, n. 8, p. 841-845, Dec 2005. HANNIER, S. et al. Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: a potential role in enhanced Borrelia burgdoferi transmission. Immunology, v. 113, n. 3, p. 401-408, Nov 2004. HEINRICH, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J, v. 374, n. Pt 1, p. 1-20, Aug 15 2003. HEINZE, D. M. et al. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasit Vectors, v. 5, p. 26, 2012. HILDEBRANDT, A.; GRAY, J. S.; HUNFELD, K. P. Human babesiosis in Europe: what clinicians need to know. Infection, v. 41, n. 6, p. 1057-1072, Dec 2013. HORAK, I. G.; CAMICAS, J. L.; KEIRANS, J. E. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): a world list of valid tick names. Exp Appl Acarol, v. 28, n. 1-4, p. 27-54, 2002. HORKA, H. et al. Tick saliva affects both proliferation and distribution of Borrelia burgdorferi spirochetes in mouse organs and increases transmission of spirochetes to ticks. Int J Med Microbiol, v. 299, n. 5, p. 373-380, Jun 2009. HUNFELD, K. P.; HILDEBRANDT, A.; GRAY, J. S. Babesiosis: recent insights into an ancient disease. Int J Parasitol, v. 38, n. 11, p. 1219-1237, Sep 2008. ISAWA, H. et al. Identification and characterization of plasma kallikrein-kinin system inhibitors from salivary glands of the blood-sucking insect Triatoma infestans. FEBS J, v. 274, n. 16, p. 4271-4286, Aug 2007. ISAWA, H. et al. A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen. J Biol Chem, v. 277, n. 31, p. 27651-27658, Aug 2 2002. IWASAKI, A. Division of labor by dendritic cells. Cell, v. 128, n. 3, p. 435-436, Feb 9 2007. JANEWAY, C. A., JR. How the immune system protects the host from infection. Microbes Infect, v. 3, n. 13, p. 1167-1171, Nov 2001. JANEWAY, C. A., JR.; MEDZHITOV, R. Innate immune recognition. Annu Rev Immunol, v. 20, p. 197-216, 2002. JONES, L. D.; HODGSON, E.; NUTTALL, P. A. Enhancement of virus transmission by tick salivary glands. J Gen Virol, v. 70 ( Pt 7), p. 1895-1898, Jul 1989. JONES, S. A. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol, v. 175, n. 6, p. 3463-3468, Sep 15 2005. JONES, S. A.; SCHELLER, J.; ROSE-JOHN, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest, v. 121, n. 9, p. 3375-3383, Sep 2011. JONGEJAN, F.; UILENBERG, G. The global importance of ticks. Parasitology, v. 129 Suppl, p. S3-14, 2004. KAPSENBERG, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol, v. 3, n. 12, p. 984-993, Dec 2003. KARCZEWSKI, J. et al. An inhibitor from the argasid tick Ornithodoros moubata of cell adhesion to collagen. Biochem Biophys Res Commun, v. 208, n. 2, p. 532-541, Mar 17 1995. KAZIMIROVA, M.; STIBRANIOVA, I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol, v. 3, p. 43, 2013. KELLER, A. et al. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat Commun, v. 3, p. 698, 2012. KOPECKY, J.; KUTHEJLOVA, M.; PECHOVA, J. Salivary gland extract from Ixodes ricinus ticks inhibits production of interferon-gamma by the upregulation of interleukin-10. Parasite Immunol, v. 21, n. 7, p. 351-356, Jul 1999. KRAWCZAK, F. S. et al. Rickettsial infection in Amblyomma cajennense ticks and capybaras (Hydrochoerus hydrochaeris) in a Brazilian spotted fever-endemic area. Parasit Vectors, v. 7, p. 7, 2014. KUSHWAH, R.; HU, J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci, v. 1, n. 1, p. 20, 2011. LABRUNA, M. B. et al. Larval behavioral diapause regulates life cycle of Amblyomma cajennense (Acari: Ixodidae) in Southeast Brazil. J Med Entomol, v. 40, n. 2, p. 170-178, Mar 2003. LABRUNA, M. B. et al. Comparative susceptibility of larval stages of Amblyomma aureolatum, Amblyomma cajennense, and Rhipicephalus sanguineus to infection by Rickettsia rickettsii. J Med Entomol, v. 45, n. 6, p. 1156-1159, Nov 2008. LABRUNA, M. B.; TERASSINI, F. A.; CAMARGO, L. M. Notes on population dynamics of Amblyomma ticks (Acari: Ixodidae) in Brazil. J Parasitol, v. 95, n. 4, p. 1016-1018, Aug 2009. LAWRIE, C. H.; RANDOLPH, S. E.; NUTTALL, P. A. Ixodes ticks: serum species sensitivity of anticomplement activity. Exp Parasitol, v. 93, n. 4, p. 207-214, Dec 1999. LEBOULLE, G. et al. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J Biol Chem, v. 277, n. 12, p. 10083-10089, Mar 22 2002. LEVY, S. The Lyme disease debate: host biodiversity and human disease risk. Environ Health Perspect, v. 121, n. 4, p. A120-125, Apr 2013. LIU, Y.; SHI, G. Role of G protein-coupled receptors in control of dendritic cell migration. Biomed Res Int, v. 2014, p. 738253, 2014. LIU, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, v. 106, n. 3, p. 259-262, Aug 10 2001. LOPES, C. M. et al. Host specificity of Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) with comments on the drop-off rhythm. Mem Inst Oswaldo Cruz, v. 93, n. 3, p. 347-351, May-Jun 1998. MANTOVANI, E. et al. Description of Lyme disease-like syndrome in Brazil. Is it a new tick borne disease or Lyme disease variation? Braz J Med Biol Res, v. 40, n. 4, p. 443-456, Apr 2007. MARKWARDT, F. Coagulation inhibitors from blood-sucking animals. A new line of developing antithrombotic drugs. Pharmazie, v. 49, n. 5, p. 313-316, May 1994. MARYAM, J. et al. Genetic variants in interferon gamma (IFN-gamma) gene are associated with resistance against ticks in Bos taurus and Bos indicus. Mol Biol Rep, v. 39, n. 4, p. 4565-4570, Apr 2012. MASON, L. M. et al. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol, v. 30, n. 2, p. 95-103, Feb 2014. MASSARD, C. L. F., A. H. Carrapatos e doenças transmitidas comuns ao homem e aos animais. A Hora Veterinária. 135: 15-23 p. 2004. MEDZHITOV, R. Toll-like receptors and innate immunity. Nat Rev Immunol, v. 1, n. 2, p. 135-145, Nov 2001. MEJRI, N. et al. Th2 polarization of the immune response of BALB/c mice to Ixodes ricinus instars, importance of several antigens in activation of specific Th2 subpopulations. Parasite Immunol, v. 23, n. 2, p. 61-69, Feb 2001. MESQUITA JUNIOR, D. et al. Immune system - part II: basis of the immunological response mediated by T and B lymphocytes. Rev Bras Reumatol, v. 50, n. 5, p. 552-580, Sep-Oct 2010. MILDNER, A.; JUNG, S. Development and function of dendritic cell subsets. Immunity, v. 40, n. 5, p. 642-656, May 15 2014. MONTFORT, W. R.; WEICHSEL, A.; ANDERSEN, J. F. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. Biochim Biophys Acta, v. 1482, n. 1-2, p. 110-118, Oct 18 2000. MOREIRA, M. F. et al. Changes in salivary nitrophorin profile during the life cycle of the blood-sucking bug Rhodnius prolixus. Insect Biochem Mol Biol, v. 33, n. 1, p. 23-28, Jan 2003. MORITA, A. et al. Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans. FEBS J, v. 273, n. 13, p. 2955-2962, Jul 2006. MUKAI, L. S. et al. Development of resistance to nymphs of Amblyomma cajennense ticks (Acari:Ixodidae) in dogs. Ann N Y Acad Sci, v. 969, p. 180-183, Oct 2002. MURAILLE, E.; LEO, O. Revisiting the Th1/Th2 paradigm. Scand J Immunol, v. 47, n. 1, p. 1-9, Jan 1998. NAZARETH, R. A. et al. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb Haemost, v. 96, n. 1, p. 7-13, Jul 2006. NITHIUTHAI, S.; ALLEN, J. R. Effects of ultraviolet irradiation on the acquisition and expression of tick resistance in guinea-pigs. Immunology, v. 51, n. 1, p. 153-159, Jan 1984a. NITHIUTHAI, S.; ALLEN, J. R. Significant changes in epidermal Langerhans cells of guinea-pigs infested with ticks (Dermacentor andersoni). Immunology, v. 51, n. 1, p. 133-141, Jan 1984b. NITHIUTHAI, S.; ALLEN, J. R. Langerhans cells present tick antigens to lymph node cells from tick-sensitized guinea-pigs. Immunology, v. 55, n. 1, p. 157-163, May 1985. NOESKE-JUNGBLUT, C. et al. Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem, v. 270, n. 48, p. 28629-28634, Dec 1 1995. NUNN, M. A. et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol, v. 174, n. 4, p. 2084-2091, Feb 15 2005. OLIVEIRA, C. J. et al. Tick saliva induces regulatory dendritic cells: MAP-kinases and Toll-like receptor-2 expression as potential targets. Vet Parasitol, v. 167, n. 2-4, p. 288-297, Feb 10 2010. OLIVEIRA, C. J. et al. Tick saliva inhibits the chemotactic function of MIP-1alpha and selectively impairs chemotaxis of immature dendritic cells by down-regulating cell-surface CCR5. Int J Parasitol, v. 38, n. 6, p. 705-716, May 2008. OLIVEIRA, C. J. et al. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem, v. 286, n. 13, p. 10960-10969, Apr 1 2011. OLIVEIRA, P. R. BIOLOGIA E CONTROLE DE Amblyomma cajennense. Rev. Bras. Parasitol.Vet., v. V.13, p. 118-122, 2004. OLIVEIRA, P. R. et al. Seasonal dynamics of the Cayenne tick, Amblyomma cajennense on horses in Brazil. Med Vet Entomol, v. 17, n. 4, p. 412-416, Dec 2003. OLIVER, J. H., JR. Lyme disease: tick vectors, distribution, and reservoir hosts. J Med Assoc Ga, v. 78, n. 10, p. 675-678, Oct 1989. ONISHI, Y. et al. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A, v. 105, n. 29, p. 10113-10118, Jul 22 2008. PAPATHEODOROU, V.; BROSSARD, M. C3 levels in the sera of rabbits infested and reinfested with Ixodes ricinus L. and in midguts of fed ticks. Exp Appl Acarol, v. 3, n. 1, p. 53-59, Mar 1987. PETERKOVA, K. et al. Immunomodulatory arsenal of nymphal ticks. Med Vet Entomol, v. 22, n. 2, p. 167-171, Jun 2008. PINTER, A.; LABRUNA, M. B.; FACCINI, J. L. The sex ratio of Amblyomma cajennense (Acari: Ixodidae) with notes on the male feeding period in the laboratory. Vet Parasitol, v. 105, n. 1, p. 79-88, Apr 19 2002. PRESTON, S. G. et al. Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog, v. 9, n. 6, p. e1003450, 2013. PROSDOCIMI, C. C. et al. Innate immunity in wooless lamb to larvae of Amblyomma cajennense tick (Fabricius, 1787) (Acari: Ixodidae). Transbound Emerg Dis, v. 57, n. 1-2, p. 75-76, Apr 2010. RAJPUT, Z. I. et al. Importance of ticks and their chemical and immunological control in livestock. J Zhejiang Univ Sci B, v. 7, n. 11, p. 912-921, Nov 2006. RAMAMOORTHI, N. et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature, v. 436, n. 7050, p. 573-577, Jul 28 2005. RANDOLPH, G. J.; ANGELI, V.; SWARTZ, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol, v. 5, n. 8, p. 617-628, Aug 2005. RANDOLPH, S. E. Population regulation in ticks: the role of acquired resistance in natural and unnatural hosts. Parasitology, v. 79, n. 1, p. 141-156, Aug 1979. RIBEIRO, J. M. Ixodes dammini: salivary anti-complement activity. Exp Parasitol, v. 64, n. 3, p. 347-353, Dec 1987. RIBEIRO, J. M. et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol, v. 36, n. 2, p. 111-129, Feb 2006. RIBEIRO, J. M.; FRANCISCHETTI, I. M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol, v. 48, p. 73-88, 2003. RIBEIRO, J. M. et al. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med, v. 161, n. 2, p. 332-344, Feb 1 1985. ROSE-JOHN, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci, v. 8, n. 9, p. 1237-1247, 2012. SA-NUNES, A. et al. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol, v. 182, n. 12, p. 7422-7429, Jun 15 2009. SA-NUNES, A. et al. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J Immunol, v. 179, n. 3, p. 1497-1505, Aug 1 2007. SÁ-NUNES, A. O., C.J. . Sialogenins and immunomodulators derived fromblood feeding parasites. In: KINI, R. M., CLEMETSON, K.J., MARKLAND, F.S., MCLANE,M.A., MORITA, T. (Ed.). Toxins and Hemostasis: From Bench to Bedside. New York: Springer, 2010. p.131–152. SAITO, T. B. et al. An Animal Model of a Newly Emerging Human Ehrlichiosis. J Infect Dis, Jul 2 2014. SALLUSTO, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol, v. 28, n. 9, p. 2760-2769, Sep 1998. SANTOS, M. et al. Lyme borreliosis. An Bras Dermatol, v. 85, n. 6, p. 930-938, Nov-Dec 2010. SCHELLER, J. et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, v. 1813, n. 5, p. 878-888, May 2011. SCHNEIDER, B. S. et al. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS One, v. 5, n. 7, p. e11704, 2010. SEVERO, M. S. et al. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future Microbiol, v. 7, n. 6, p. 719-731, Jun 2012. SHAW, M. K.; TILNEY, L. G.; MCKEEVER, D. J. Tick salivary gland extract and interleukin-2 stimulation enhance susceptibility of lymphocytes to infection by Theileria parva sporozoites. Infect Immun, v. 61, n. 4, p. 1486-1495, Apr 1993. SHORTMAN, K.; LIU, Y. J. Mouse and human dendritic cell subtypes. Nat Rev Immunol, v. 2, n. 3, p. 151-161, Mar 2002. SHORTMAN, K. et al. Dendritic cells and T lymphocytes: developmental and functional interactions. Ciba Found Symp, v. 204, p. 130-138; discussion 138-141, 1997. SKALLOVA, A. et al. Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol, v. 180, n. 9, p. 6186-6192, May 1 2008. SLAMOVA, M. et al. Effect of tick saliva on immune interactions between Borrelia afzelii and murine dendritic cells. Parasite Immunol, v. 33, n. 12, p. 654-660, Dec 2011. SOCOLOVSCHI, C. et al. The relationship between spotted fever group Rickettsiae and ixodid ticks. Vet Res, v. 40, n. 2, p. 34, Mar-Apr 2009. SOUZA, C. E. et al. Experimental infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vet Parasitol, v. 161, n. 1-2, p. 116-121, Apr 6 2009. SOZZANI, S. Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor Rev, v. 16, n. 6, p. 581-592, Dec 2005. SOZZANI, S. et al. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol, v. 159, n. 4, p. 1993-2000, Aug 15 1997. STEERE, A. C. et al. Erythema chronicum migrans and Lyme arthritis. The enlarging clinical spectrum. Ann Intern Med, v. 86, n. 6, p. 685-698, Jun 1977. STEIGERWALD, M.; MOLL, H. Leishmania major modulates chemokine and chemokine receptor expression by dendritic cells and affects their migratory capacity. Infect Immun, v. 73, n. 4, p. 2564-2567, Apr 2005. STEINMAN, R. M.; COHN, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, v. 137, n. 5, p. 1142-1162, May 1 1973. STIBRANIOVA, I.; LAHOVA, M.; BARTIKOVA, P. Immunomodulators in tick saliva and their benefits. Acta Virol, v. 57, n. 2, p. 200-216, 2013. SZABO, M. P.; BECHARA, G. H. Sequential histopathology at the Rhipicephalus sanguineus tick feeding site on dogs and guinea pigs. Exp Appl Acarol, v. 23, n. 11, p. 915-928, Nov 1999. SZABO, M. P.; MORELLI, J., JR.; BECHARA, G. H. Cutaneous hypersensitivity induced in dogs and guinea-pigs by extracts of the tick Rhipicephalus sanguineus (Acari: Ixodidae). Exp Appl Acarol, v. 19, n. 12, p. 723-730, Dec 1995. SZABO, M. P.; OLEGARIO, M. M.; SANTOS, A. L. Tick fauna from two locations in the Brazilian savannah. Exp Appl Acarol, v. 43, n. 1, p. 73-84, 2007. SZABO, M. P.; PINTER, A.; LABRUNA, M. B. Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Front Cell Infect Microbiol, v. 3, p. 27, 2013. TRAGER, W. Acquired resistence to ticks. J Parasitol, v. 25, p. 57-81, 1939. TYSON, K. et al. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol Biol, v. 16, n. 4, p. 469-479, Aug 2007. TYSON, K. R.; ELKINS, C.; DE SILVA, A. M. A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J Immunol, v. 180, n. 6, p. 3964-3968, Mar 15 2008. VALENZUELA, J. G. et al. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem, v. 275, n. 25, p. 18717-18723, Jun 23 2000. VAN DEN HAM, H. J.; ANDEWEG, A. C.; DE BOER, R. J. Induction of appropriate Th cell phenotypes: Cellular decision-making in heterogeneous environments. Parasite Immunol, Jul 15 2013. VANCOVA, I. et al. Differential anti-chemokine activity of Amblyomma variegatum adult ticks during blood-feeding. Parasite Immunol, v. 29, n. 4, p. 169-177, Apr 2007. VARANI, S. et al. Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol, v. 77, n. 2, p. 219-228, Feb 2005. VERONEZ, V. A. et al. Ticks (Acari: Ixodidae) within various phytophysiognomies of a Cerrado reserve in Uberlandia, Minas Gerais, Brazil. Exp Appl Acarol, v. 50, n. 2, p. 169-179, Feb 2010. VESELY, D. L. et al. Langerhans cell deficiency impairs Ixodes scapularis suppression of Th1 responses in mice. Infect Immun, v. 77, n. 5, p. 1881-1887, May 2009. WIKEL, S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol, v. 4, p. 337, 2013. WIKEL, S. K. Host immunity to ticks. Annu Rev Entomol, v. 41, p. 1-22, 1996a. WIKEL, S. K. Tick modulation of host cytokines. Exp Parasitol, v. 84, n. 2, p. 304-309, Nov 1996b. WIKEL, S. K. Tick modulation of host immunity: an important factor in pathogen transmission. Int J Parasitol, v. 29, n. 6, p. 851-859, Jun 1999. WIKEL, S. K.; ALLEN, J. R. Acquired resistance to ticks. iii. Cobra venom factor and the resistance response. Immunology, v. 32, n. 4, p. 457-465, Apr 1977. YOSHINARI, N. H. et al. [Brazilian lyme-like disease or Baggio-Yoshinari syndrome: exotic and emerging Brazilian tick-borne zoonosis]. Rev Assoc Med Bras, v. 56, n. 3, p. 363-369, May-Jun 2010. YOSHINARI, N. H. et al. [Lyme disease. Report of a case observed in Brazil]. Rev Hosp Clin Fac Med Sao Paulo, v. 48, n. 4, p. 170-174, Jul-Aug 1993. YU, D. et al. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochem Biophys Res Commun, v. 343, n. 2, p. 585-590, May 5 2006. ZEIDNER, N. S. et al. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific. J Parasitol, v. 88, n. 6, p. 1276-1278, Dec 2002. | por |
dc.rights | Acesso Aberto | por |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Carrapatos | por |
dc.subject | Amblyomma cajennense | por |
dc.subject | Saliva | por |
dc.subject | Células dendríticas | por |
dc.subject | Ticks | eng |
dc.subject | Amblyomma cajennense | eng |
dc.subject | Saliva | eng |
dc.subject | Dendritic cells | eng |
dc.subject.cnpq | Ciências Biológicas | por |
dc.title | Efeitos imunossupressores da saliva de Amblyomma cajennense em células dendríticas derivadas de medula óssea murina | por |
dc.type | Dissertação | por |
Aparece nas coleções: | Programa de Pós-Graduação em Ciências Fisiológicas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissert Tamires M C Costa.pdf | Dissert Tamires M C Costa | 842,95 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons