Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação em Ciências Fisiológicas
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/463
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCUBA, Marília Beatriz de-
dc.creator.ID07698284697por
dc.contributor.advisor1GIRALDO, Luis Eduardo Ramirez-
dc.contributor.advisor1ID45642761668por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8436042978241075por
dc.contributor.advisor-co1SILVA, Valdo José Dias dapor
dc.contributor.advisor-co1IDCPF:64003051653-
dc.date.accessioned2017-12-20T13:03:11Z-
dc.date.issued2012-08-13-
dc.identifier.citationCUBA, Marília Beatriz de. Efeitos da estimulação colinérgica com brometo de priridostigmina na cardiopatia chagásica crônica em camundongos. 2012. 103f. Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2012.por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/463-
dc.description.resumoEmbora a patogênese da doença de Chagas seja altamente complexa e não seja completamente compreendida, é amplamente aceito que um equilíbrio entre a invasão do parasita e a resposta imune-inflamatória do hospedeiro desempenha um papel importante no desenvolvimento e evolução da doença. Nos últimos anos vários trabalhos na literatura vem destacando a marcada influência do sistema nervoso autonômico sobre o sistema imunológico em vários modelos experimentais de doenças com caráter inflamatório, sejam elas infecciosas ou auto-imunes, entre outras. Este trabalho teve como objeto de investigação avaliar os efeitos de modificações na neuroimunomodulação autonômica parassimpática, empregando o agente anti-colinesterásico brometo de piridostigmina, sobre a cardiopatia chagásica crônica experimental em camundongos. Para tal, camundongos C57BL/6j controles (Con) não tratados (NT), ou tratados com brometo de piridostigmina (Pirido) e camundongos C57BL/6j inoculados com formas tripomastigotas da cepa Romildo, respectivamente, de T. Cruzi (Chg) não tratados (NT), ou tratados com brometo de piridostigmina (Pirido) foram empregados. Todos os animais foram acompanhados por 6 meses e ao final submetidos à avaliação da presença de parasita sanguíneo e tecidual, eletrocardiograma (ECG) convencional sob anestesia, estudo da função autonômica cardíaca por meio de análise de variabilidade da frequência cardíaca e bloqueio autonômico farmacológico com atropina e propranolol, histopatologia do coração e quantificação de citocinas: fator de necrose tumoral-alfa (TNF-α), interferon gama (IFNγ), Interleucina 5(IL-5) e IL-10. Ao final do período de observação foi verificada uma significativa alteração do perfil eletrocardiográfico, autonômico e histopatológico, sugestivo de uma resposta inflamatória com desvio da resposta imune para o perfil Th1 nos animais do grupo Chg-NT em relação aos outros grupos estudados. Observouse que o tratamento crônico com o anticolinesterásico brometo de pirisdostigmina, nos animais Chg-Pirido, provocou uma redução significativa da resposta imune-inflamatório e fibrose no miocárdio, sem alterações do parasitismo sanguíneo e tissular, sugerindo uma redução da resposta imune perfil Th1 sem alteração do perfil Th2. Tal redução do perfil de resposta Th1 pode ser confirmada em parte pela diminuição nos níveis séricos de IFNγ e tendência a diminuição do TNF-α, sem alteração nos níveis de IL-10 nos animais Chg-Pirido, quando comparados aos Chg-NT. Concluindo, diante da análise em conjunto dos resultados apresentados, nossos achados confirmam a influência do papel neuroimuno-modulatório marcante do sistema nervoso autônomo parassimpático na evolução da resposta imune-inflamatória ao T. cruzi, durante a cardiopatia chagásica crônica experimental em camundongos.por
dc.description.abstractAlthough the pathogenesis of Chagas' disease is highly complex and not completely understood, it is widely accepted that a balance between the invasion of the parasite and the immune-inflammatory response of the host plays an important role in the development and progression of the disease. In recent years many studies in the literature has been highlighting the marked influence of the autonomic nervous system on the immune system in various experimental models of inflammatory diseases, whether infectious or autoimmune diseases, among others. This work had the object of investigation to assess the effects of changes in autonomic parasympathetic neuroimmunomodulation, employing the anti-cholinesterase pyridostigmine bromide on the experimental chronic Chagas' disease in mice. To this end, C57BL/6J mice controls (Con) non treated (NT), or treated with pyridostigmine bromide (Pyr) and C57BL/6J mice inoculated with trypomastigotes of Romildo strain, respectively, T. Cruzi (Chg) non treated (NT) or treated with pyridostigmine bromide (Pyr) were used. All animals were followed for 6 months and at the ending they were assessed for presence of blood and tissue parasites, conventional electrocardiogram (ECG) under anesthesia, study of cardiac autonomic function by means of analysis of heart rate variability and pharmacological autonomic blockade with atropine and propranolol, heart histopathology and quantification of cytokines: tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), interleukin 5 (IL- 5) and interleukin 10 (IL-10). At the end of the observation period it was observed a significant change in the electrocardiographic profile, autonomic and histopathological findings, suggestive of an inflammatory response with a shift of immune response towards the Th1 in Chg-NT animals compared to the other groups. It was observed that chronic treatment with anticholinesterase pyridostigmine bromide, in Chg-pyrido animals, caused a significant reduction in inflammatory immune response, myocardial fibrosis, without alteration of tissue and blood parasitism, suggesting a reduction in Th1 immune response without changing the Th2. This reduction in Th1 profile can be partly confirmed by a decrease in serum levels of IFNγ and tendency to decrease TNF-α, with no change in levels of IL-10, in Chg-pyrido animals when compared to NT-Chg group. In conclusion, our findings confirm the marked neuroimuno-modulatory role played by parasympathetic autonomic nervous system in the evolution of inflammatory-immune response to T. cruzi during the chronic Chagas' disease in experimental mice.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/2806/Dissert%20Marilia%20B%20Cuba.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Curso de Medicinapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programCurso de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAlves MJM, Moratara RA. A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells?. Memorial Instituto Oswaldo Cruz, Rio de Janeiro, Vol. 104(Suppl. I): 76-88, 2009. Andersson U & Tracey KJ. Reflex Principles of Immunological Homeostasis. Annu. Rev. Immunol. 2012. 30:313–35. Andersson U & Tracey KJ. J. Neural reflexes in inflammation and immunity. Exp. Med. 2012. Vol. 209 No. 6 1057-1068 Antel J, Birnbaumg, Artung HP, Vicent A. Clinical Neuroimmunology. 2ª ed, 2005. Bear MF, Connors BW, Paradiso, MA. Neurociências: Desvendando o Sistema Nervoso. 3ª ed. São Paulo: Artmed, 2008. Bestetti RB; Soares EG; Sales-Neto VN; De Araujo RC; Oliveira JS. The resting electrocardiogram of T. cruzi-infected rats. Rev. Inst. Med. Trop, São Paulo, 1987; 29(4):224- 9. Bestetti RB; Oliveira JS. The significance of electrocardiographic study in experimental Chagas cardiopathy in rats. Arq Bras Cardiol 1988; 51(2):131-4. Borovikova, L.V., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405:458–462, 2000. Castro RR, Porphirio G, Serra SM, Nobrega AC. Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia. Heart 2004;90:1119e23. Chapadeiro E, Silva E L, Silva ACM, Fernandes P, Ramirez LE. Despopulação neuronal cardíaca em hamsters (Mesocricetus auratus) cronicamente infectados com o Trypanosoma cruzi. Revista da Sociedade Brasileira de Medicina Tropical. vol.32 n.1 Uberaba Jan./Feb. 1999. Cobb D, Hambright D, Smeltz RB (2010). T-bet-independent effects of IL-12 family cytokines on regulation of Th17 responses to experimental T. cruzi infection. J Leukoc Biol. 88, 965-971. Corrêa- Oliveira R, Gomes JAS, Lemos EM, Cardoso GM, Reis DD, Adad S, Crema E, Filho OAM, Costa MOR, Gazinelli G, Bahia-Oliveira LMG. The Role of the Immune Response on the Development of bn5tr4Severe Clinical Forms of Human Chagas Disease. Mem Inst Oswaldo Cruz, Vol. 94, Suppl. I: 253-255. Rio de Janeiro, 1999 Coura JR. Tripanossomíase, Doença de Chagas. Cienc. Cult. vol.55 no.1 São Paulo Jan./Mar 2003. Coura JR. Origem, determinantes e morbidade da Doença de Chagas. Revista de La Facultad de Ciências da La Salud. Universidad de Carabobo. - Vol. 11, Supl. Nº 1 Valencia, Venezuela. Diciembre 2007. Cunha-Neto E, Kalil J. Autoimmunity in Chagas' heart disease. Sao Paulo Medical Journal. vol.113 no.2 São Paulo Mar./Apr. 1995 Cunha-Neto E, Nogueira LG, Teixeira PC, Ramasawmy R, Drigo SA, Goldberg AC, Fonseca SG, Bilate AM, Kalil J. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy . Mem. Inst. Oswaldo Cruz vol.104 supl.1 Rio de Janeiro July 2009. Cutrullis RA e cols. Immunomodulatory and anti-fibrotic effects og Ganglioside therapy on the chronic form of experimental Trypanossoma cruzi infection. International Immunopharmacology 11(2011) 1024-1031. D’ávila DA e cols. Immunological imbalance between IFN-γ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 104(1): 100-105, February 2009. De Melo AS e cols. IL-10 and IFN-γ gene expression in chronic Chagas disease patients after in vitro stimulation with recombinant antigens of Trypanosoma cruzi. Cytokine 58 (2012) 207–212 Dias JCP. O Tratamento Específico na Doença de Chagas. Conferencia Nacional de Saúde on line. Ministério da Saude: Fundação Oswaldo Cruz-Centro de Pesquisa René Rachou. Belo Horizonte, 1999. Elenkov IJ; Papanicolau DA; Wilder RL; Chrousos GP. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: Clinical implications. Proc Assoc Am Physicians, 108: 374-381, 1996. Ferreira RC e cols. Increased Plasma Levels of Tumor Necrosis Factor-α in Asymptomatic/“Indeterminate” and Chagas Disease Cardiomyopathy Patients. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 98(3): 407-411, April 2003. Fiuza JA e cols. Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease. PLoS Negl Trop Dis 3(9): e512, 2009. Gutierrez FRS, et al. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunology, 2009, 31, 673–685. Hoyer D, Maestri R, La Rovere MT, Pinna DG. Autonomic response to cardiac dysfunction in chronic heart failure: a risk predictor based on autonomic information flow. Pacing Clin Electrophysiol 2008;31:214e20. Hunston JM & Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. Journal of International Medicine, 1365-2796, 2010. Ianni BM, Mady C. Terapêutica da Forma Crônica da Doença de Chagas. É Eficaz o Tratamento Etiológico? Arquivos Brasileiro de Cardiologia. vol.70 n.1 São Paulo Jan. 1998. Junqueira Jr LF. A summary perspective on the clinical-functional significance of cardiac autonomic dysfunction in Chagas’ disease. Revista da Sociedade Brasileira de Medicina Tropical 39 (Suplemento III): 64-69, 2006. Junqueira Jr LF. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease. Revista da Sociedade Brasileira de Medicina Tropical 45(2):243-252, mar-abr, 2012. Kawata J & Shimohama S. Multiple Pathways Attenuating Cytotoxicity in Models of Alzheimer’s and Parkinson’s Diseases. Journal of Alzheimer’s Disease 24 Suppl 2: 95– 109(2011). Köberle F. Chagas' disease and Chagas' syndromes: the pathology of American trypanosomiasis, Adv. Parasitol. 1968; 6: 63–116. Laranja FS; Dias E; Nóbrega G; Miranda A. Chagas´disease: a clinical, epidemiological and pathologic study. Circulation, 14:1034-1059, 1956. Llewellyn-Smith I & Verbene AJM. Central Regulation of Autonomic Functions. 2ª ed: Oxford University Press, Inc.2011. Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, et al. Frequency of Interferon- gamma -producing T cells specific for Trypanosomacruzi inversely correlates with disease severity in chronic human Chagas disease.J Infect Dis 189: 909–918, 2004. Lima RS, Soares MBP, Santos RR. Cell therapy in Chagas' disease. Revista Brasileira de Hematologia e Hemoterapia. vol.31 supl.1 São Paulo May 2009 Epub June 05, 2009. Machado MPR e cols. Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease. Experimental Physiology, 2012. Machado MPR & Dias da Silva VJ. Autonômic Neuroimmunomodulation in Chagasic Cardiomyopathy. Experimental Physiology, 2012. Maisel AS e cols. A new method for isolation of human lymphocytes subsets reveals differential regulation of beta adrenergic receptors by terbutaline treatment. Clin Pharmacol Ther, 46: 429-439, 1989. MALLIANI A. Principles of Cardiovascular Neural Regulation in Health and Disease. Norwell: Kluwer Academic Publishers, 2000. Marques DSO, Canesin MF, Barutta Jr F, Fuganti CJ, Baretto ACP. Avaliação de pacientes assintomáticos com forma crônica da doença de Chagas através da análise do eletrocardiograma dinâmico, ecocardiograma e do peptídeo natriurético tipo B. Arquivos Brasileiros de Cardiologia. vol.86 no.3 São Paulo Sept. 2006. Matsuda A, et al. Novel Terapeutic targets for Sepsis: Regulation Exaggerated Inflammatory Responses. J Nippon Med Sch 2012: 79(1). Medei EH, Nascimento JHM, Pedrosa RC, Carvalho ACC. Envolvimento de auto-anticorpos na fisiopatologia da doença de Chagas. Arquivos Brasileiro de Cardiologia. vol.91 no.4 São Paulo Oct. 2008. Morris SA; Tanowitz HB; Wittner M; Bilezikian JP. Pathophysiological insights into the cardiomyopathy of Chagas´desease. Circulation, v82, p 1900-1909.1990. Mosovich SE, Mady C, Lopez N, Ianni B, Dias JCP, Corrêa D, Farhkouh ME. Chagas disease as a mechanistic model for testing a novel hypothesis. Revista da Sociedade Brasileira de Medicina Tropical. vol.41 no.1 Uberaba Jan./Feb. 2008 Nagajyothi F & Machado FS e cols. Mechanisms of Trypanosoma cruzi Persistence in Chagas Disease. Olofsson PS e cols. Rethinking inflammation: neural circuits in the regulation of immunity. Immunological Reviews 248/2012. Pavlov VA e cols. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. PNAS. vol. 103:13, 5219–5223, 2006 . Pavlov VA. Cholinergic Modulation of Inflammation. Int. J. Clin. Exp Med. Vol1, 203- 212.2008. Prata, A. Clinical and epidemiological aspects of Chagas’ disease. Lancet Infec. Dis. 1: 92- 100, 2001. Perez AR, Silva-Barbosa SD, Berbert LR, Revelli S, Beloscar J, Savino W, Botasso O. Immunoneuroendocrine alterations in patients with progressive forms of chronic Chagas disease. J Neuroimmunol. 235, 84-90, 2011. Radojcic T e cols. Changes in beta adrenergic receptor distribution on immunocytes during differentiation: An analysis of T cells and macrophages. J Neurosci Res, 30:328-335, , 1991 Ribeiro ALP, Rocha MOC. Indeterminate form of Chagas' disease: considerations about diagnosis and prognosis. Rev. Soc. Bras.Med.Trop. vol.31 n.3 Uberaba May/June 1998. Ribeiro ALP e cols. Vagal impairment in elderly Chagas disease patients: A population-based study (The Bambuí Study). International Journal of Cardiology. 2009. Ribeiro AL, De Carvalho AC, Lombardi F, Talvani A, Teixeira MM, Rocha MO. In vivo inhibitory effect of anti-muscarinic autoantibodies on the parasympathetic function in Chagas disease. Int J Cardiol. 145, 339-340, 2010. Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardoni C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ . Acetylcholine- synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 334, 98-101, 2011. Sanders VM. The role of norepinephrine and beta-2-adrenergic receptors stimulation in the modulation of Th1,Th2, and B lymphocyte function. Adv Exp Med Biol, 437:269-278, 1998. Santos-Buch, C. A.; Teixeira, A. R. L. Immunology of experimental Chagas’ disease: III. Rejection of allogenic heart cell in vitro. J. Exp. Med., 140: 398-402, 1988. Serra SM, Costa RV, Castro RRT, Xavier S, Nobrega ACL. Cholinergic Stimulation Improves Autonomic and Hemodynamic Profile During Dynamic Exercise in Patients With Heart Failure. Journal of Cardiac Failure Vol. 15 n°. 2 2009 Soares MBP, Santos RR. Current status and perspectives of cell therapy in Chagas disease. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 104(Suppl. I): 325-332, 2009. Souza A & Marin-Neto JA. Functional alterations of the autonomic nervous system in Chagas' heart disease. São Paulo Medical Journal/RPM 113(2) Marl Apr 1995. Storino R & Milei J. Enfermidad de Chagas. Ed:Dayma Argentina, 1994. TASK FORCE OF THE EUROPEAN SOCIETY OF CARDIOLOGY IN NORTH AMERICAN SOCIETY OF PACING ELECTROPHYSIOLOGY: heart rate variability: Stardards of measurement , Physiological interpretation , and Clinical Use. Circulation, 93:1043-1065, 1996 Teixeira AR, Hecht MM, Guimaro MC, Sousa AO, Nitz N (2011). Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev. 24, 592-630. Tostes Jr S, Rocha-Rodrigues DB, Pereira GA, Rodrigues Jr V. Myocardiocyte apoptosis in heart failure in chronic Chagas' disease. International Journal of Cardiology vol. 99 n.2. p 233-237. March 2005. Tracey KJ. The inflammatory reflex. Nature. Vol.420.19/26. December 2002. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. Journal of Clinical Invesigation. 117:289–296 2007. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 9, 418-428.2009 Tracey KJ. Understanding immunity requires more than immunology. Nature Immunology.Vol 11, n° 7, July 2010. Tracey KJ. Immune Cells Exploit a Neural Circuit to Enter the CNS. Cell 148, February 3, 2012. Trakhtenberg EF & Goldberg J. Neuroimmune Communication. Science Immunology . Vol 33, nº 1, 2011. Vila-Boas F, Feitosa GS, Soares MBP, Pinho-Filho JA, Mota A, Almeida AJG, Carvalho C, Carvalho HG, Oliveira AD, Santos RR. Transplante de células de medula óssea para o miocárdio em paciente com insuficiência cardíaca secundária á doença de Chagas. Arquivos Brasileiros de Cardiologia. vol.82 no.2 São Paulo Feb. 2004 Vinhaes MC, Dias JCP. Doença de Chagas no Brasil. Cad. Saúde Pública vol.16 suppl.2 Rio de Janeiro 2000. Waghabi M. Fibrose Cardíaca Chagásica. Fundação Oswaldo Cruz. Ministério da Saúde. Rio de Janeiro, 2009. Wilder RL. Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol. 1995; 13: 307-338. Zimerman LI, Liberman A, Castro RRT, Ribeiro JP, Nóbrega ACL. Acute electrophysiologic consequences of pyridostigmine inhibition of cholinesterase in humans. Brazilian Journal of Medical and Biological Research 43: 211-216, 2010.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectSistema nervoso autônomo parassimpáticopor
dc.subjectResposta imune.por
dc.subjectDoença de Chagas.por
dc.subjectParasympathetic autonomic nervous system.eng
dc.subjectImmune hagresponse.eng
dc.subjectChagas disease.eng
dc.subject.cnpqCiências Biológicaspor
dc.titleEfeitos da estimulação colinérgica com brometo de priridostigmina na cardiopatia chagásica crônica em camundongospor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação em Ciências Fisiológicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Marilia B Cuba.pdfDissert Marilia B Cuba2,49 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons