Use este identificador para citar ou linkar para este item:
http://bdtd.uftm.edu.br/handle/tede/576
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | BENZE JÚNIOR, Roosevelt Antonio | - |
dc.creator.ID | 06659029648 | por |
dc.creator.Lattes | http://lattes.cnpq.br/7100253147473031 | por |
dc.contributor.advisor1 | SIMON, Claudio Roberto | - |
dc.contributor.advisor1ID | 12938508883 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5641601085787358 | por |
dc.contributor.advisor-co1 | ARAUJO, Lucas Anhezini de | - |
dc.contributor.advisor-co1ID | 30348850832 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/7187546927822723 | por |
dc.date.accessioned | 2018-06-08T17:45:24Z | - |
dc.date.issued | 2014-06-16 | - |
dc.identifier.citation | BENZE JÚNIOR, Roosevelt Antonio. Caracterização do locus Fhos e sua participação na morte celular programada do intestino médio larval de Drosophila melanogaster. 2014. 101f. Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2014. | por |
dc.identifier.uri | http://bdtd.uftm.edu.br/handle/tede/576 | - |
dc.description.resumo | Nos metazoários a morte celular fisiológica ou programada (MCP), nas suas diferentes formas, apoptótica, autofágica ou necrótica desempenha papel central na manutenção da homeostase. Várias doenças estão correlacionadas às disfunções da regulação da MCP, dentre elas podemos destacar doenças degenerativas, autoimunes e o câncer. Vários componentes da maquinaria da MCP foram conservados evolutivamente e apresentam grande semelhança mesmo entre organismos tão distintos quanto os insetos e seres humanos. Estas semelhanças, juntamente com a grande variedade de ferramentas experimentais disponíveis tornam a Drosophila melanogaster um modelo poderoso para a caracterização de novas funções gênicas relacionadas à MCP. Nosso grupo tem utilizado a MCP das glândulas salivares larvais como modelo experimental para o estudo de processos de morte celular fisiológicos durante o desenvolvimento de Drosophila. A MCP das glândulas salivares larvais é regulada pela ecdisona (hormônio esteróide). Embora a cascata de ativação transcricional induzida por ecdisona seja conhecida, em última instância, como esse sinal sistêmico (ecdisona), presente na hemolinfa do inseto, promove respostas estágio e tecido específicas ainda é pouco conhecido. Para responder essa pergunta, realizamos um “screen” genético com o intuito de identificar novos genes associados, à regulação ou execução da MCP de glândulas salivares. Neste “screening” identificamos uma mutação mapeada no locus Fhos que causa um fenótipo defectivo de MCP, a persistência de glândulas salivares larvais. A caracterização genética desse locus demonstrou que sua função é essencial para a ocorrência da MCP de glândulas salivares. O locus Fhos codifica proteínas com alta similaridade à família de proteínas forminas as quais participam do remodelamento dinâmico do citoesqueleto em diferentes processos biológicos. Neste trabalho, realizamos análises transcricionais e in silico de uma das isoformas codificadas pelo locus Fhos, a isoforma Fhos-C, as quais revelaram ser esta fruto de uma fusão gênica entre Fhos e um gene flanqueador denominado “desert”. A análise transcricional de Fhos-C revelou que este transcrito é diferencialmente expresso e geralmente em baixos níveis. Iniciamos análises funcionais do locus Fhos através da utilização de linhagens transgênicas na tentativa de avaliar a potencial função deste locus na MCP do intestino larval o qual e também eliminado por MCP durante o desenvolvimento pupal. Após determinar o perfil de transcrição da isoforma biologicamente ativa (Fhos-B) na MCP do intestino larval foram realizados ensaios de superexpressão e de knockdown desta isoforma. Em conjunto nossos dados mostram que a isoforma Fhos-C, parece não participar da MCP durante a metamorfose do inseto. A indução da expressão ectópica e o “knockdown” tecido específico da isoforma Fhos-B não produziu fenótipo evidente quanto aquele observado na MCP de glândulas salivares. | por |
dc.description.abstract | Throughout metazoans physiological or programmed cell death (PCD), in its different fashion, apoptotic, autophagic and necrotic, plays a central role in maintaining homeostasis. Several diseases are associated with the misregulation of PCD, such as degenerative and autoimmune diseases as well as cancer. Several components of the PCD machinery were evolutionarily conserved even in such distinct organisms as insect and humans. In addition to these similarities, the variety of experimental tools available make Drosophila a powerfull for the characterization of new cell death-related genetic functions. Our group has used the PCD of larval salivary glands as an experimental model to study physiological cell death processes during Drosophila’s development. The PCD in larval salivary glands is regulated by ecdysone (steroid Hormone). Despite the extensive knowledge of the transcriptional cascade triggered by ecdysone, how, this systemic signal present in the hemolymph, ultimately promotes tissue and stage specific responses it is still unclear. To answer this question, we have carried out a genetic screen to identify new genes associated with regulation and execution of salivary gland PCD. In such screen we have identified a mutation mapped on the the Fhos locus which cause a cell death defective phenotype, the persistence of salivary glands. The genetic and functional characterization of the locus have shown that its function is essential for the proper PCD of salivary glands. The Fhos locus encodes proteins that share high similarity to the Formin family of proteins which have been shown to play a role in active cytoskeleton remodeling in distinct biological processes. In this work, we have performed the transcriptional analysis of one of the isoforms encoded by the Fhos locus, the Fhos-C isoform, that showed that this isoform is probably the fusion between Fhos and a flanking gene called “desert”. The trasncriptional analysis also revealed that the Fhos-C is diferentially expressed during development in lower levels. We have also started functional analysis of the Fhos locus using transgenic lines aiming to evaluate the potential function of it in the PCD of the larval midgut that is also eliminated by PCD during development. After determining the transcriptional profile of the biologicaly active isoform in the midgut (FhosB) we carried out overexpression and knockdown assays of this particular isoform. Taken together, our results reveal that the isoform-C is not active in the PCD during insect metamorphosis. Either, overexpression or knockdown of the isoform Fhos-B did not produced any relevant phenotype differently of the drastic one seen in salivary glands. | eng |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais | por |
dc.format | application/pdf | * |
dc.thumbnail.url | http://bdtd.uftm.edu.br/retrieve/3510/Dissert%20Roosevelt%20A%20Benze%20Junior.pdf.jpg | * |
dc.language | por | por |
dc.publisher | Universidade Federal do Triângulo Mineiro | por |
dc.publisher.department | Instituto de Ciências da Saúde - ICS::Curso de Medicina | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFTM | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., Brandon R.C., Rogers Y.H., Blazej R.G., Champe M., Pfeiffer B.D., Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Gabor L.G., Abril J.F., Agbayani A., An H.J., Andrews-Pfannkoch C., Baldwin D., Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier P., Burtis K. C., Busam D. A., Butler H., Cadieu E., Center A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dunn P., Durbin K.J., Evangelista C.C., Ferraz C., Ferriera S., Fleischmann W., Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., Harris N.L., Harvey D., Heiman T.J., Hernandez J.R., Houck J., Hostin D., Houston K. A., Howland T.J., Wei M., Ibegwam C., Jalali M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum K.A., Kimmel B.E., Kodira C.D., Kraft C., Kravitz S., Kulp D., Lai Z., Lasko P., Lei Y., Levitsky A.A., Li J., Li Z., Liang Y., Lin X., Liu X., Mattei B., McIntosh T.C., McLeod M.P., McPherson D., Merkulo G., Milshina N.V., Mobarry C., Morris J., Moshrefi A., Mount S.M., Moy M., Murphy B., Murphy L., Muzny D.M., Nelson D.L., Nelson D.R., Nelson K.A., Nixon K., Nusskern D.R., Pacleb J.M., Palazzolo M., Pittman G.S., Pan S., Pollard J., Puri V., Reese M.G., Reinert K., Remington K., Saunders R.D., Scheeler F., Shen H., Shue B.C., Sidén-Kiamos I., Simpson M., Skupski M.P., Smith T., Spier E. , Spradling A.C., Stapleton M., Strong R., Sun E., Svirskas R., Tector C., Turner R., Venter E., Wang A.H., Wang X., Wang Z.Y., Wassarman D. A., Weinstock G. M., Weissenbach J., Williams S. M., Woodage T., Worley K.C., Wu D., Yang S., Yao Q. A., Ye J., Yeh R. F., Zaveri J. S., Zhan M., Zhang G., Zhao Q., Zheng L., Zheng X. H., Zhong F. N., Zhong W., Zhou X., Zhu S., Zhu X., Smith H.O., Gibbs R.A., Myers E. W., Rubin G.M., Venter J.C. The Genome Sequence of Drosophila melanogaster. Science. 2000; 287(5461): 2185-2195. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts.K. & Walter. P. Molecular Biology of the cell. 4.ed. Garland Science, 2002. Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010; 430(2): 199–205. Altschul S.F., Gish W., Miller W., Myers EW., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990; 403–410. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997; 25: 3389–3402. Andres A.J., Thummel, C.S., Methods for quantitative analysis of transcription in larvae and prepupae. Methods Cell Biol. 1994; 44: 565–573. Anhezini L. A. Produção e caracterização de linhagens transgênicas para o estudo funcional de jazigo durante o desenvolvimento de Drosophila. Ribeirão Preto – SP. Tese de92 Doutorado. Faculdade de Medicina de Ribeirão Preto. USP. 2011; 190p. Anhezini L., Saita A. P., Costa M. S., Ramos R. G., Simon C. R.. Fhos encodes a Drosophila Formin-like protein participating in autophagic programmed cell death. Genesis. 2012; 50(9): 672-84. Aravin A.A.., Lagos-Quintana M., Yalcin A., Zavolan M., Marks D.The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003; 5: 337–350. Baehrecke E.H. How death shapes life during development. Nat Rev Mol Cell Biol. 2002; 3(10): 779-787. Baehrecke E.H. Steroid regulation of programmed cell death during Drosophila development. Cell Death and Differentiation. 2000; 7(11) 1057-1062. Barrett T., Clark K., Gevorgyan R., Gorelenkov V., Gribov E., Karsch-Mizrachi I., Kimelman M., Pruitt K.D., Resenchuk S., Tatusova T. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 2012; 40:D57– D63. Bellen H. J., Levis R. W., He Y., Metaxakis A., Savakis C., Schulze K. L., gene disruption project: Progress using Genetics. 2011; 188(3): 731–743. Berreur P., Porchero P., Berreur Bonnefant I., Simpson P. Ecdysteroid levels and puparalion in Drosophila melanogaster. Exp.Zool. 1979; 210, 347-352. Berry D.L., Baehrecke E.H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007; 131(6): 1137–1148. Bor B., Vizcarra C. L., Phillips M. L., Quinlan M. E. Autoinhibition of the formin Cappuccino in the absence of canonical autoinhibitory domains. Mol Biol Cell. 2012; 23(19): 3801–3813. Buljan M., Frankish A., Bateman A. Quantifying the mechanisms of domain gain in animal proteins. Genome Biol. 2010; 11(7): 74. Campellone K.G., Welch M.D. A Nucleator Arms Race: Cellular Control of Actin Assembly. Nat Rev Mol Cell Biol. 2010; 11(4): 237–251. Campos-Ortega J.A., V. Hartenstein. The embryonic development of Drosophila melanogaster. Springer Verlag, 1985.Berlin. Castrillon D.H., Wasserman S.A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development. 1994; 120(12): 3367-3377. Chan F.K. Fueling the flames: Mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb Perspect Biol. 2012; 4: a008805. (http://www.ncbi.nlm.nih.gov/ pmc/articles/PMC3536335/)93 Chittaranjan S., McConechy M., Hou Y.C., Freeman J.D., DeVorkin L., Gorski S.M. Steroid Hormone Control of Cell Death and Cell Survival: Molecular Insights Using RNAi. PLoS Genet. 2009; 5(2): e1000379. Cho Y.S., Challa S., Moquin D., Genga R., Ray T.D., Guildford M., Chan F.K. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009; 137(6): 1112-1123. Copeland J.W., Copeland S.J., Treisman R. Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J Biol Chem. 2004; 279(48): 50250– 50256. Denton D., Nicolson S., Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ. 2012; 19(1): 87–95. Denton D., Shravage B., Simin R., Mills K., Berry D. L., Baehrecke E. H., S. Kumar. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol. 2009; 19(20): 1741–1746. Denton D., Shravage B., Simin R., Baehrecke E.H., Kumar S. Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy.Autophagy. 2010; 6(1): 163. Domazet-Loso T., Tautz D. An Evolutionary Analysis of Orphan Genes in Drosophila. Genome Res. 2003; 13(10): 2213–2219. Edinger A.L., Thompson C.B. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004; 16(6): 663-669. Erkner A., Roure A., Core N., Angelats C., Vola C., Fasano L., Kerridge S. Submetido para o banco de dados INSDC- EMBL/GenBank/DDBJ. 1999. Etienne-Manneville, Hall S. Rho GTPase in cell biology. Nature. 2002; 420:629 – 653. Figueroa M, Hinrichs M.V., Bunster M., Babbitt P., Martinez-Oyanedel J., Olate J. Biophysical studies support a predicted superhelical structure with Armadillo repeats for Ric-8. Protein Sci. 2009; 18:1139–1145. Fink S. L., Cookson B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005; 73: 1907–1916. Galluzzi L., Maiuri M.C., Vitale I., Zischka H., Castedo M., Zitvogel L., Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death and Differ. 2007; 14(7): 1237–1243. Galluzzi L.,Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S., Gottlieb E., Green D.R., Hengartner M.O., Kepp O., Knight R.A., Kumar S., Lipton S. A., Lu X., Madeo F., Malorni W., Mehlen P., Nuñez G., Peter M.E., Piacentini M., Rubinsztein94 D.C., Shi Y., Simon H.U.,Vandenabeele P., White E., Yuan J., Zhivotovsky B., Melino G., Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012; 19(1): 107–120. Garneau N. L., Wilusz J., Wilusz C. J. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007; 8(2): 113-26. Goode B. L., Eck M. J. Mechanism and Function of Formins in the Controlof Actin Assembly. Rev. Biochem. 2007; 76: 593–627. Graveley B. R., Brooks A. N., Carlson J. W., Duff M. O., Landolin J. M., Yang L., Artieri C. G., van Baren M. J., Boley N., Booth B. W., Brown J. B., Cherbas L., Davis C. A., Dobin A., Li R., Lin W., Malone J. H., Mattiuzzo N. R., Miller D., Sturgill D., Tuch B. B., Zaleski C., Zhang D., Blanchette M., Dudoit S., Eads B., Green R. E., Hammonds A., Jiang L., Kapranov P., Langton L., Perrimon N., Sandler J. E., Wan K. H., Willingham A., Zhang Y., Zou Y., Andrews J., Bickel P.J., Brenner S.E., Brent M.R., Cherbas P., Gingeras T. R., Hoskins R.A., Kaufman T. C., Oliver B., Celniker S. E. The developmental transcriptome of Drosophila melanogaster. Nature. 2011; 471 (7339): 473-9. HeeKim C., Jeon H. M., Yeon Lee S., Kyung Ju M., J. Y. Moon, H. G. Park, M. Yoo, B. T. Choi, J. I. Yook, S. Lim, S. Han, H. S. Kang.Implication of Snail in Metabolic Stress-Induced Necrosis. PLoS One. 2011; 6(3): e18000. Higgs H. N., Peterson K.J. Phylogenetic Analysis of the Formin Homology 2 Domain. Mol Biol Cell. 2005; 16(1): 1–13. Higgs H.N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 2005; 30(6): 342-353. Hotchkiss R.S., Strasser A., McDunn J.E., Swanson P.E. Cell Death in Disease: Mechanisms and Emerging Therapeutic Concepts. Cell Death. 2009; N Engl J Med 361: 1570-1583.10.1056/NEJMra0901217 PubMed: 19828534. Ihry R.J., Sapiro A.L., Bashirullah A. Translational Control by the DEAD Box RNA Helicase belle Regulates Ecdysone-Triggered Transcriptional Cascades. PLoS Genet. 2012; 8(11): e1003085. Jiang C., Baehrecke E. H., Thummel C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development. 1997;124: 4673-4683. Khalid S., Khabar A.. Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci. 2010; 67(17): 2937–2955 Kiess W., Gallaher B.Hormonal control of programmed cell death/apoptosis. Eur. J. Endocrinol.1998;138:482-491. Klionsky D.J. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005; 118(1): 7–18. Kovar D. R., Kuhn J. R., Tichy A. L., Pollard T. D. The fission yeast cytokinesis95 formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J Cell Biol. 2003; 161:875–887. Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008; 9(12): 1004–1010. Kuchárová-Mahmood S., Raska I., Mechler B.M., Farkas R. Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors. Journal of Structural Biology. 2002; 140(1-3): 67–78. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. Journal of Mol Biol. 1982; 157: 105–132. Laughon A., Gesteland R. F. Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol Cell Biol. 1984; 4(2): 260–267. Lee C.Y., Baehrecke E. H.. Steroid regulation of autophagic programmed cell death during development. Development. 2001; 128(8): 1443-1455. Lee C.Y., Cooksey B.A., Baehrecke E.H. Steroid regulation of midgut cell death during Drosophila development. Dev Biol. 2002; 250(1):101-11. Liu R., Linardopoulou E.V., Osborn G.E., Parkhurst S.M. Formins in Development: Orchestrating Body Plan Origami. Biochim Biophys Acta. 2010; 1803(2): 207–225. Louie B., Higdon R., Kolker E. A statistical model of protein sequence similarity and function similarity reveals overly-specific function predictions. PLoS One. 2009; 4(10): e7546. Macias M.J., Wiesner S., Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002; 513(1): 30–37. Maroni, G., Stamey S. C. Use of blue food to select synchoronous, late third instar larvae. Dros. Inf. Serv. 1983; 59: 142-143. Marsh J. A., Teichmann S. A. How do proteins gain new domains? Genome Biol. 2010; 11(7): 126. McPhee C.K., Baehrecke E.H. Autophagy in Drosophila melanogaster. Biochim Biophys Acta. 2009; 1793(9): 1452–1460. Meier P., Finch A., Evan G. Apoptosis in development. Nature. 2000; 407(6805): 796-801. Meléndez A., Neufeld T. P. The cell biology of autophagy in metazoans: a developing story. Development. 2008; 135(14): 2347–2360. Ménard I., Gervais F.G., Nicholson D.W., Roy S. Caspase-3 cleaves the forminhomology-domain-containingprotein FHOD1 during apoptosis to generate a C-terminal96 fragment that is targeted to the nucleolus. Apoptosis, 2006; 11(11): 1863-1876. Otomo T., Tomchick D.R., Otomo C., Machius M. Rosen M.K. Crystal structure of the formin mDia1 in auto in habited conformation. PLOS ONE. 2010; 12896 doi:10. 1038/35087035. Pai A. A., Cain C. E., Mizrahi-Man O., De Leon S., Lewellen N., Veyrieras J., Degner J. F., Gaffney D. J., Pickrell J. K., Stephens M., Pritchard J. K., Gilad Y. The Contribution of RNA Decay Quantitative Trait Loci to Inter-Individual Variation in SteadyState Gene Expression Levels.PLoS Genet. 2012; 8(10): e100300. Paul A. S., Pollard T.D. Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton. 2009; 66(8): 606–617. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res. 2005; 33: 116–120. Rewitz K.F., Yamanaka N., O'Connor M.B. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell. 2010; 19(6): 895–902. Riddiford L.M. Hormones and Drosophila development. Cold Spring Harbor. 1993; 2: 899–939. Rodriguez-Rocha H., Garcia-Garcia A., Panayiotidis M. I., Franco R. DNA damage and autophagy. Mutat Res. 2011; 711: 158–166. Ruby J.G., Stark A., Johnston W.K., Kellis M., Bartel D.P. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 2007;17: 1850–1864. Ryoo H.D., Baehrecke E.H. Distinct death mechanisms in Drosophila development. Curr Opin Cell Biol. 2010; 22:889–895. Saita A. P. Caracterização da Expressão Tecidual de FHOS durante o desenvolvimento de Drosophila melanogaster. Ribeirão Preto – SP. Dissertação de Doutorado. Faculdade de Medicina de Ribeirão Preto. USP. 2013.101 p. Saita. A. P. Produção de anticorpos policlonais e determinação do padrão subcelular de distribuição de JAZIGO durante a morte celular programada em glândulas salivares de Drosophila melanogaster. Ribeirão Preto – SP. Dissertação de Mestrado. Faculdade de Medicina de Ribeirão Preto. USP. 2008; 103 p. Schnoes A.M, Brown S.D., Dodevski L., Babbin. Annotation error in public database: mis annotation of molecular function in enzyme super families. PLOS Comput Biol. 2009; 5(12) e 1000605. Schweichel J.V. and Merker H.J. The morphology of various types of all death in prenatal tissues. Teratology 7. 1973; 253-266. Serralbo O., Kerridge S. Desert: a new Drosophila segment polarity gene.97 Submetido para o banco de dados EMBL/GenBank/DDBJ. 2000. Seth A., Otomo C., Rosen M. K. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1. J Cell Biol. 2006; 174: 701–713. Shen H.M, Codomo P. Autophagic cell death: lach ness monster or endangered spicies? Autophegy. 2011; 7(5):457-65. Shingleton A.W. The regulation of organ size in Drosophila: Physiology, plasticity, patterning and physical force. Organogenesis. 2010; 6: 76. Simon C. R., Ameida J.C. Programmed cell death in Bradysia hygida (Diptera, Sciaridae) salivary glands presents apoptotic features. Genesis. 2004; 40(1): 22-31. Simon, C. R.; Rizvi, N.; Baehrecke, E.H . Caracterização genética e molecular de jazigo, um novo gene que participa da morte celular programada em Drosophila melanogaster. In: Emílio A. Jeckel-Neto; Moisés E. Bauer. (Org.). Avanços em Biologia Celular. Porto Alegre, 2002, p. 85-88. Smith B.A., Smith B.D. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem. 2012; 23:1989-2006 Spasic M., Friedel C. C., Schott J., Kreth J., Leppek K., Hofmann S., Ozgur S., Stoecklin G.. Genome-Wide Assessment of AU-Rich Elements by the AREScore Algorithm. PLoS Genet. 2012; 8(1): e1002433. Takashima S., Younossi-Hartenstein A., Ortiz P. A., Hartenstein V.. A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol. 2011; 221:69– 81. Talbot W.S., Swyryd E.A., Hogness D.S. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell. 1993; 73(7): 1323-1337. Thummel C.S. Steroid-triggered death by autophagy. BioEssays. 2001(8); 23: 677- 682. Toll-Riera M., Albà M. M.. Emergence of novel domains in proteins. BMC Evol Biol. 2013; 13: 47. Vandenabeele P., Galluzzi L., Berghe T.V., Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology. 2010; 11: 700–714. Vanlangenakker N., Berghe V. T., Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 2012; 19: 75-86. Venter J.C., Adams M.D., Sutton G.G., Kerlavage A.R., Smith H.O., Hunkapiller98 M. Shotgun sequencing of the human genome. Science. 1998; 280: 1540-1542. Watanabe N., Madaule P., Reid T., Ishizaki T., Watanabe G., Kakizuka A., Saito Y., Nakao K., Jockusch B., Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. Jun 2, 1997; 16(11): 3044–3056. Watanabe N., Kato T., Fujita A., Ishizaki T., Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1999; 1(3): 136-43. Watson J.D., Baker T.A., Bell S.P., Grann A., Levine M. Losick R., Cshlp I. Molecular Biology of the Gene. Artmed. 2006; 5: 760. Westendorf J., Mernaugh R., Hibert S. Identification andcharacterization of a protein containing formin homology (FH1/FH2) domains. Gene. 1999; 232:173-182. White E. Autophagic cell death unraveled: Pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy. 2008; 4(4): 399–401 White-Cooper H. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. Spermatogenesis. 2012 January 1; 2(1): 11–22. Wissler L., Gadau J., Simola D. F., Helmkampf M., Bornberg-Bauer E. Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes. Genome Biol Evol. 2013; 5(2): 439–455. Xu Y., Moseley J. B., Sagot I., Poy F., Pellman D., Goode B. L., Eck M. J. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell. 2004; 116(5): 711-723. Yamamoto M.T. Drosophila Genetic Resource and Stock Center. Exp Anim. 2010; 59(2): 125-38. Yao T.P., Segraves W.A., Oro A.E., McKeown M., Evans R.M. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell. 1992; 71(1): 63-72. Yin V.P., Thummel C.S. Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin. Cell Dev. Biol. 2005; 16: 237–243. | por |
dc.rights | Acesso Aberto | por |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Drosophila Melanogaster. | por |
dc.subject | Morte celular. | por |
dc.subject | Autofagia | por |
dc.subject | cell death | eng |
dc.subject | Drosophila Melanogaster. | eng |
dc.subject.cnpq | Fisiologia | por |
dc.title | Caracterização do locus Fhos e sua participação na morte celular programada do intestino médio larval de Drosophila melanogaster | por |
dc.title.alternative | Characterization of the Fhos locus and its participation in the larval midgut cell death of Drosophila melanogaster | eng |
dc.type | Dissertação | por |
Aparece nas coleções: | Programa de Pós-Graduação em Ciências Fisiológicas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissert Roosevelt A Benze Junior.pdf | Dissert Roosevelt A Benze Junior | 3,04 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons