Use este identificador para citar ou linkar para este item:
http://bdtd.uftm.edu.br/handle/tede/647
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | TANAKA, Sarah Cristina Sato Vaz | - |
dc.creator.ID | 33786967881 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5778364857984906 | por |
dc.contributor.advisor1 | BALARIN, Marly Aparecida Spadotto | - |
dc.contributor.advisor1ID | 06208176847 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9825231661876909 | por |
dc.contributor.advisor-co1 | RODRIGUES JUNIOR, Virmondes | - |
dc.contributor.advisor-co1ID | 45813493620 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8909243237236516 | por |
dc.date.accessioned | 2019-05-16T13:24:58Z | - |
dc.date.issued | 2018-11-09 | - |
dc.identifier.citation | TANAKA, Sarah Cristina Sato Vaz. Avaliação genética e funcional de FOXP3, IL17A e dosagem de citocinas pró e anti-inflamatórias em mulheres com pré-eclâmpsia. 2018. 104f. Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2018. | por |
dc.identifier.uri | http://bdtd.uftm.edu.br/handle/tede/647 | - |
dc.description.resumo | A pré-eclâmpsia (PE) é uma doença multissistêmica característica da gravidez que contribui significativamente para a morbidade e mortalidade materna e neonatal. Descobertas recentes sugerem que mudanças significativas no sistema imune estão envolvidas em sua etiologia. Tem sido proposto que a redução de células T reguladoras (Tregs) com consequente falha na tolerância imunológica promova o aumento de citocinas pró-inflamatórias, gerando disfunção endotelial e estresse oxidativo. O fator de transcrição FOXP3 é fundamental para induzir a diferenciação das células Tregs e polimorfismos localizados na região promotora deste gene podem alterar a produção e função dessas células. A IL17A é a principal citocina secretada por células Th17 e em excesso induz inflamação tecidual e polimorfismos nesse gene já foram associados à patogênese de muitas doenças autoimunes e inflamatórias. Portanto, o objetivo do presente trabalho foi investigar os polimorfismos rs3761549C>T, rs3761548A>C e rs2232365A>G no gene FOXP3 e rs4711998 A>G; rs8193036 C>T e rs2275913 A>G no gene IL17A, a expressão dos referidos genes na PE e níveis placentários de IL12, TNF-α, IL10, IL6 e IL8. Participaram desse estudo 263 mulheres, divididas em grupo de estudo (PE=89) e grupo controle (C=174). A genotipagem das amostras foi realizada por PCR em Tempo Real. A expressão relativa dos genes FOXP3 e IL17A foi realizada por qPCR em 17 amostras de placenta do grupo PE e 14 do grupo Controle. A quantificação das citocinas foi realizada por citometria de fluxo. Variáveis contínuas foram descritas por média ± desvio padrão e as variáveis categóricas expressas em porcentagem. As comparações estatísticas entre dois grupos foram realizadas com teste t de Student não pareado, teste de Mann‐Whitney ou teste do qui quadrado (χ2). Regressão logística múltipla e algoritmo EM foram utilizados para avaliar os modelos de herança e inferir haplótipos dos polimorfismos estudados, respectivamente. Valores de p <0,05 foram considerados significativos. Não houve associação entre as frequências genotípicas e alélicas, modelos de herança e haplótipos dos polimorfismos investigados e a PE. Os grupos controle dos polimorfismos rs3761548 no gene FOXP3 e rs4711998 do gene IL17A não estavam em equilíbrio de Hardy-Weinberg. Primiparidade e recorrência familiar foram associadas ao risco de PE. Níveis maiores de FOXP3 foram observados em mulheres com PE, principalmente PE precoce. Os genótipos dos polimorfismos do gene FOXP3 não alteram sua expressão. Níveis elevados de IL8 e IL6 foram observados em mulheres com PE tardia. Portanto, esse estudo conclui que não há associação entre os polimorfismos rs3761549C>T, rs3761548A>C e rs2232365A>G no gene13 FOXP3 e rs4711998 A>G; rs8193036 C>T e rs2275913 A>G no gene IL17A e PE. Recorrência familiar e primiparidade são consideradas fatores de risco para PE na amostra estudada. Níveis elevados de FOXP3 estão associados ao desenvolvimento de PE precoce. Altos níveis de IL6 e IL8 estão associados à PE tardia. | por |
dc.description.abstract | Preeclampsia (PE) is a multisystemic disease specific of pregnancy, which is important for maternal and neonatal morbidity and mortality. Recent findings suggest that significant changes in the immune system are involved in PE pathogenesis. It has been proposed that the reduction of regulatory T cells (Tregs) with consequent failure in immunological tolerance promotes the increase of pro-inflammatory cytokines, generating endothelial dysfunction and oxidative stress. FOXP3 is a critical transcription factor to induce differentiation of Tregs, besides polymorphisms located in the promoter region of this gene can alter the production and function of Tregs cells. IL17A is the major cytokine secreted by Th17 cells and in excess induces tissue inflammation. Polymorphisms in FOXP3 gene have already been associated with the pathogenesis of many autoimmune and inflammatory diseases. Therefore, we investigated rs3761549C> T, rs3761548A> C and rs2232365A> G polymorphisms in FOXP3 gene and rs4711998 A> G, rs8193036 C>T and rs2275913 A>G polymorphisms in IL17A gene. We also quantified these genes and IL12, TNF-α, IL10, IL6 and IL8 levels in PE. Genotyping was performed by Real Time PCR. The relative expression of the FOXP3 and IL17A genes was performed by qPCR in 17 placental samples from the PE group and 14 from the Control group. Cytokine quantification was performed by flow cytometry. Continuous variables were described by mean ± standard deviation and categorical variables were expressed by percentage. Comparisons between both groups were performed using an unpaired Student’s t test, Mann– Whitney U test or Chi square (χ2) test as appropriate. The genetic models and haplotypes were analyzed by SNPStat software. Significance was assumed when the statistical tests returned Pvalues <0.05. A total of 263 women, study group (PE = 89) and control group (C = 174) participated in the study. There was no association between the genotypic and allelic frequencies, as well as the inheritance models for the polymorphisms investigated and the PE. The control group of polymorphisms rs3761548 in the FOXP3 gene and rs4711998 of the IL17A gene were not in Hardy-Weinberg equilibrium. There was no association between haplotypes and PE. Primiparity and familial recurrence were associated with PE risk. The expression of FOXP3 was statistically higher in the PE group. Statistically elevated levels of IL8 and IL6 were observed in women with late-onset PE. Therefore, there is no association between rs3761549C>T, rs3761548A>C and rs2232365A> G in the FOXP3 gene and rs4711998 A>G; rs8193036 A>T and rs2275913 A>G polymorphisms in the IL17A gene and PE. Familial recurrence and16 primiparity are considered risk factors for PE in the sample studied. Elevated levels of FOXP3 are associated with the development of early-onset PE. High levels of IL6 and IL8 are associated with late-onset PE. | eng |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.thumbnail.url | http://bdtd.uftm.edu.br/retrieve/4047/Tese%20Sarah%20C%20S%20V%20Tanaka.pdf.jpg | * |
dc.language | por | por |
dc.publisher | Universidade Federal do Triângulo Mineiro | por |
dc.publisher.department | Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFTM | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências da Saúde | por |
dc.relation.references | ABALOS, E; et al. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol, v. 170, n. 1, p.1-7, 2013. ABEDIN, D.A; et al. ACE gene rs4343 polymorphism elevates the risk of preeclampsia in pregnant women. J Hum Hypertens, 2018. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol, v. 122, n. 5, p.1122, 2013. ANDRÉ, G.M; et al. Analysis of FOXP3 polymorphisms in infertile women with and without endometriosis. Fertil Steril, v. 95, n. 7, p. 2223-7, 2011. ANNUNZIATO, F., et al. The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int. Immunol, v. 20, p, 1361–1368, 2008. ANVARI, F; et al. Investigating the Association of IL-17A and IL-17F with Susceptibility to Preeclampsia in Iranian Women. Iran J Immunol, v. 12, n. 2, p.117-28, 2015. ARISAWA, T; et al. The influence of polymorphisms of interleukin-17A and interleukin-17F genes on the susceptibility to ulcerative colitis. J Clin Immunol, v. 28, p. 44–49, 2007. AYORINDE, A.A; BHATTACHARYA, S. Inherited predisposition to preeclampsia: Analysis of the Aberdeen intergenerational cohort. Pregnancy Hypertens, v. 8, p. 37-41, 2017. BACCHETTA, R; et al. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci, v. 1417, n. 1, p. 5-22, 2018. BAO, M.H; et al. Meta-Analysis for the Association between Polymorphisms in Interleukin-17A and Risk of Coronary Artery Disease. Int J Environ Res Public Health, v. 13, n. 7, p. 1-14, 2016. BELL, M.J. A historical overview of preeclampsia-eclampsia. J Obstet Gynecol Neonatal Nurs, v. 39, n. 5, p. 510-518, 2010. BEN, J.M; et al. Role of FOXP3 gene polymorphism in the susceptibility to Tunisian endemic Pemphigus Foliaceus. Immunol Lett, n. 184, p. 105-111, 2017. BENNETT, C.L; et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, v. 27, n. 1, p. 20-25, 2001. BETTELLI, E., et al.Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol, v. 19, p. 652–657, 2007.75 BILANO, V.L; OTA, E; GANCHIMEG, T; MORI, R; SOUZA, J.P. Risk factors of preeclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis. PLoS One, v. 9, n. 3, p. 911-9, 2014. BOKSLAG, A; et al. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev, v. 102, p. 47-50, 2016. BOYD, H.A; et al. Associations of personal and family preeclampsia history with the risk of early, intermediate- and late-onset preeclampsia. Am J Epidemiol, v.178, n. 11, p. 1611-9, 2013. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas e Estratégicas. Política Nacional de Atenção Integral à Saúde da Mulher: princípios e diretrizes. Brasília, DF; 2009. Disponível em: <http://conselho.saude.gov.br/ultimas_noticias/2007/politica_mulher.pdf>. Acesso em: 13 de julho de 2018. BUCKNER, J.H; ZIEGLER, S.F. Functional analysis of FOXP3. Ann N Y Acad Sci, v. 1143, p. 151-69, 2008. BUURMA, A.J; et al. Genetic variants in pre-eclampsia: a meta-analysis. Hum Reprod Update, v. 19, n. 3, p. 289-303, 2013. CAMPBELL, D.J. Control of Regulatory T Cell Migration, Function, and Homeostasis. J Immunol, v.195, n.6, p. 2507-13, 2015. CHELBI, S.T; et al. Why preeclampsia still exists? Med Hypotheses, v. 81, n. 2, p. 259-63, 2013. CHEN, K; KOLLS, J.K. Interluekin-17A (IL17A). Gene, v. 614, p. 8-14, 2017. CHEN, X; et al. Foxp3 (-/ATT) polymorphism contributes to the susceptibility of preeclampsia. PLoS One, v. 8, n. 4, p.596- 99, 2013. CHEN, Z; et al. FOXP3 and RORγt: transcriptional regulation of Treg and Th17. Int Immunopharmacol, v. 11, n. 5, p. 536-42, 2011. CHENG, S.B; SHARMA, S. Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol, v. 38, n. 6, p. 699-708, 2016. CHENG, S; et al. Interleukin 17A Polymorphism Elevates Gene Expression and Is Associated with Increased Risk of Nonsmall Cell Lung Cancer. DNA Cell Biol, v. 34, n. 1, p. 63-8, 2015. CHESLEY L.C. Hypertensive disorders or pregnancy. New York, NY, USA: Appleton-CenturyCrofts, 1978.76 CHESLEY, L.C; COOPER, D.W. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. Br J Obstet Gynaecol,v. 93, n. 9, p. 898-908, 1986. CHORLEY, B.N; et al. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res, v. 659, n. 1-2, p. 147-57, 2008. CORNELIUS, D.C. Preeclampsia: From Inflammation to Immunoregulation. Clin Med Insights Blood Disord, v. 11, p. 1-6, 2018. CORNELIUS, D.C; LAMARCA, B. TH17- and IL-17- mediated autoantibodies and placental oxidative stress play a role in the pathophysiology of pre-eclampsia. Minerva Ginecol, v. 66, n. 3, p. 243-9, 2014. CORREA, P.J; et al. Etiopathogenesis, prediction, and prevention of preeclampsia. Hypertens Pregnancy, v. 35, n. 3, p. 280-94, 2016. CURTIS, M.M; WAY, S.S. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology, v. 126, p. 177–185, 2009. DUHIG, K, et al. Recent advances in the diagnosis and management of pre-eclampsia. F1000Res, v. 28, p.7:242, 2018. DULEY, L. The Global Impact of Pre-eclampsia and Eclampsia. Semin Perinatol, v. 33, n. 3, p. 130–137, 2009. FIGUEIREDO, A.S, Schumacher, A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology, v. 148, n. 1, p. 13-21, 2016. FOLK, D.M. Hypertensive Disorders of Pregnancy: Overview and Current Recommendations. J Midwifery Womens Health, v. 63, n. 3, p. 289-300, 2018. FREEMAN, D.J; et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension, v. 44, p. 708–714, 2004. GAMBINERI, E; et al. Immune dysregulation, polyen-docrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome ofsystemic autoimmunity caused by mutations of FOXP3, a critical regulator ofT-cell homeostasis. Curr Opin Rheumatol, v. 15, p. 430–5, 2003. GELDENHUYS, J; et al. Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Front Immunol, v. 9, p. 1-15, 2018. GHARESI-Fard, B; et al. The Expression of T-Helper Associated Transcription Factors and Cytokine Genes in Pre-Eclampsia. Iran J Immunol, v. 13, n. 4, p. 296-308, 2016.77 GHOLAMI, M; et al. Association study of FOXP3 gene and the risk of pre-eclampsia. Clin Exp Hypertens, v. 5, p. 1-4, 2017. GHULMIYYAH, L; SIBAI, B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol., v. 36, n. 1, p. 56-9, 2012. GIORDANO, J.C; et al. The burden of eclampsia: results from a multicenter study on surveillance of severe maternalmorbidity in Brazil. PLoS One, v. 9, n. 5, e97401, 2014. HAKONSEN, L.B; et al. Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl, v. 16, n. 1, p. 39-49, 2014. HAMMAD, A; et al. Interleukin-17A rs2275913, Interleukin-17F rs763780 and rs2397084 gene polymorphisms as possible risk factors in Juvenile lupus and lupus related nephritis. Autoimmunity, v. 49, n. 1, p. 31-40, 2016. HARMON, A.C; et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond), v. 130, v. 6, p. 409-19, 2016. HERNÁNDEZ-DÍAZ, S; et al. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ, v. 18, p. 338, 2009. HORTOLANI, A.C.C; et al. Investigation of rs1800469 and rs1800468 Polymorphisms of the TGF-β1 Gene in Women with Pre-eclampsia. Revista Brasileira de Saúde Materno Infantil, v. 18, p. 179-185, 2018. HOSSEINI, A, et al. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol, v. 233, n. 9, p. 6561-6573, 2018. HSU, P; NANAN, R.K. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol, v 28, n. 5, p. 125, 2014. HUANG, X; et al. Serum and placental interleukin-18 are elevated in preeclampsia. J Reprod Immunol, v. 65, n. 1, p. 77-87, 2005. HUTCHEON, J.A; et al. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol, v. 25, n. 4, p.391-403, 2011. HU, D; et al. Alteration of peripheral CD4+CD25+ regulatory T lymphocytes in pregnancy and pre-eclampsia. Acta Obstet Gynecol Scand, v. 87, p. 190–194, 2008. INOUE, N; et al. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases. Clin Exp Immunol, v. 162, n. 3, p. 402- 6, 2010. JAHAN, P; et al. Role of Foxp3 gene in maternal susceptibility to pre-eclampsia - a study from South India. Scand J Immunol, v. 77, n. 2, p. 104-8, 2013.78 JEYABALAN, A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev, n. 71, v. 1, p. 18- 25, 2013. JIANG, L.L; RUAN, L.W. Association between FOXP3 promoter polymorphisms and cancer risk: A meta-analysis. Oncol Lett, v. 8, n. 6, p. 2795-2799, 2014. JIANJUN, Z, et al. Imbalance of T-cell transcription factors contributes to the Th1 type immunity predominant in pre-eclampsia. Am J Reprod Immunol, v. 63, n. 1, p. 38-45, 2010. KENNY, L.C; et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension, v. 64, n. 3, p. 644-52, 2014. KHADER, Y.S; et al. Preeclampsia in Jordan: incidence, risk factors, and its associated maternal and neonatal outcomes. J Matern Fetal Neonatal Med, v. 31, n. 6, p. 770-776, 2018. KHARKOVA, O.A; et al. First-trimester smoking cessation in pregnancy did not increase the risk of preeclampsia/eclampsia: A Murmansk County Birth Registry study. PLoS One, v. 12, n. 8, 2017. LA ROCCA C, et al. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett, v. 162, p. 41-8, 2014. LAMARCA B, et al. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am J Physiol Regul Integr Comp Physiol, v. 311, n. 1, p.1-9, 2016. LARESGOITI-SERVITJE; et al. An immunological insight into the origins of pre-eclampsia. Hum. Reprod. Update, v. 16, p. 510–524, 2010. LEON RODRIGUEZ, D.A; et al. Investigation of the role of IL17A gene variants in Chagas disease. Genes Immun, v. 16, n. 8, p. 536-40, 2015. LIVAK, K.J; SCHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-(Delta Delta C(T)) Method. Methods, v. 25, n. 4, p. 402-8, 2001. LIU, B; et al. Polymorphisms of the IL27 gene in a Chinese Han population complicated with pre-eclampsia. Sci Rep, v. 6, 2016. LIU, N; et al. Haplotype-association analysis. Adv Genet, v. 60, p.335-405, 2008. LUO, Z.C; et al. The effects and mechanisms of primiparity on the risk of pre-eclampsia: a systematic review. Paediatr Perinat Epidemiol, v. 21, n. 1, p. 36-45, 2007. LU, L; et al. The regulation of immune tolerance by FOXP3. Nat Rev Immunol, v. 17, n.11, p. 703-717, 2017.79 MADAZLI, R; et al. Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand, v. 82, p. 797–802, 2003. MADHUR, M.S; et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension, v. 55, p. 500–7, 2010. MARTINS, E.F; et al. Causas múltiplas de mortalidade materna relacionada ao aborto no Estado de Minas Gerais, Brasil, 2000-2011. Cad. Saúde Pública, v. 33, n. 1, p. 1-11, 2017. McMILLEN, S. Eclampsia. In K. F. Kiple (ed.). The Cambridge historical dictionary of disease. New York, Cambridge University Press, 2003,p. 110-112. MELLEMBAKKEN, J. R; et al. Chemokines and leukocyte activation in the fetal circulation during preeclampsia. Hypertension, v. 38, p. 394–398, 2001. METZ, TD; et al. FOXP3 gene polymorphisms in preeclampsia. Am J Obstet Gynecol, v. 206, n. 2, p. 1-6, 2012. MISHRA, S, et al. Study of the association of forkhead box P3 (FOXP3) gene polymorphisms with unexplained recurrent spontaneous abortions in Indian population. J Genet, v. 97, n. 2, p. 405-410, 2018. MOLVAREC, A; et al. Increased circulating interleukin-17 levels in preeclampsia. J Reprod Immunol, v. 112, p. 53-7, 2015. MOR G, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci, v.1221, p. 80-7, 2011. MORENO-EUTIMIO, M.A; et al. Increased serum levels of inflammatory mediators and low frequency of regulatory T cells in the peripheral blood of preeclamptic Mexican women. Biomed Res Int, v. 2014, p. 1-8, 2014. MOSELEY, T.A; et al. Interleukin- 17 family and IL-17 receptors. Cytokine Growth Factor Rev, v. 14, p. 155-174, 2003. MUNN DH, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, v. 281, p.1191–3, 1998. NAJAFI S; et al. Association of IL-17A and IL-17 F gene polymorphisms with recurrent pregnancy loss in Iranian women. J Assist Reprod Genet, v. 31, n. 11, p. 1491-6, 2014. NEDOSZYTKO B; et al. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part III: Polymorphisms of genes involved in Tregs' activation and function. Postepy Dermatol Alergol, v. 34, n. 6, p.517- 525, 2017.80 NOROUZIAN, M; et al. FoxP3 gene promoter polymorphism affects susceptibility to preeclampsia. Hum Immunol, v. 77, n. 12, p. 1232-1238, 2016. ODA, J.M.M; et al. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet, v. 92, p. 163-171, 2013. ODEGARD, R. A; et al. Preeclampsia and fetal growth. Obstet. Gynecol, v. 96, p. 950–955, 2000. OLUSI, S.O; et al: Interleukins in preeclampsia. Ann Saudi Med, v. 20, p. 4–7, 2000. ORLANDO, I.C JÚNIOR; et al. CASPASE-8 gene polymorphisms (rs13416436 and rs2037815) are not associated with preeclampsia development in Brazilian women. J Matern Fetal Neonatal Med, v. 31, n. 3, p. 289-293, 2018. PHIPPS, E; et al. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin. J. Am. Soc. Nephrol, v. 11, n. 6, p. 1102–1113, 2016. PINHEIRO, M.B; et al. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine, v. 62, n. 1, p. 165-73, 2013. QI, Y; et al. Genetic association between Interleukin-17A gene polymorphisms and the pathogenesis of Graves' disease in the Han Chinese population. Clin Endocrinol (Oxf), v. 84, n. 2, p. 265-270, 2016. QUINN, K.H; et al. The unique pathophysiology of early-onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol, v. 91, p. 76–82, 2011. RAGUEMA, N; et al. FAS A-670G and Fas ligand IVS2nt A 124G polymorphisms are significantly increased in women with pre-eclampsia and may contribute to HELLP syndrome: a case-controlled study. BJOG, 2018. RAMOS, J.G.L; et al. Preeclampsia. Rev Bras Ginecol Obstet, v. 39, n. 9, p. 496-511, 2017. REDMAN, C.W; SARGENT, I.L. Immunology of pre-eclampsia. Am J Reprod Immunol, v. 63, n.6, p. 534- 43, 2010. REYNOLDS, J.M; et al. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine & growth factor reviews, v. 21, n. 6, p. 413–423, 2010. RIBEIRO, V.R; et al. Association between cytokine profile and transcription factors produced by T-cell subsets in early- and late-onset pre-eclampsia. Immunology, v. 152, n. 1, p. 163-173, 2017. RINEHART, B.K; et al. Expression of the placental cytokines tumor necrosis factor alpha, interleukin 1beta, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol, v. 181, n. 4, p. 915-20, 1999.81 RYCKMAN, K; WILLIAMS, S.M. Calculation and use of the Hardy-Weinberg model in association studies. Curr Protoc Hum Genet, v.1, p. 1.18, 2008. SACHIDANANDAM, R; et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, v. 409, p. 928–933, 2001. SAITO, S; et al. Clinical implication of recent advances in our understanding of IL-17 and reproductive immunology. Expert Rev Clin Immunol, v. 7, p. 649–57, 2011. SAKAGUCHI, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol, v. 22, p. 531–62, 2004. SALAZAR GARCIA, M.D; et al. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. J Reprod Immunol, v. 125, p. 25-31, 2018. SAMBROOK, J; FRITSCH, E.F, MANIATIS, T.E. Molecular cloning, a laboratory manual. New York: Cold Spring Harbor. 1989. SANTNER-NANAN, B; et al. Systemic increase in the ratio between Foxp3+ and IL-17- producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol, v. 183, p. 7023–7030, 2009. SAXENA, D; et al. The transcription factor Forkhead Box P3 gene variants affect idiopathic recurrent pregnancy loss. Placenta, v. 36, n. 2, p. 226-31, 2015. SAY, L; et al. Global causes of maternal death: aWHO systematic analysis. Lancet Glob Health., v. 2, n. 6, p.323–333, 2014. SZARKA, A; et al. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol, v.2, n. 2010 Dec 2;11:59. doi: 10.1186/1471-2172-11-59. PubMed PMID: 21126355; PubMed Central PMCID: SCHAID, D. J., et al. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet, v. 70, p. 425–434, 2002. SENHAJI, N; et al. Association of inflammatory cytokine gene polymorphisms with inflammatory bowel disease in a Moroccan cohort. Genes Immun, v. 17, v.1, p. 60-5, 2016. SHARMA, A; et al. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in preeclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol, v. 58, n. 1, p. 21-30, 2007. SHEHJAR, F, et al. Association of FoxP3 promoter polymorphisms with the risk of Graves' disease in ethnic Kashmiri population. Gene, v. 672, p. 88-92, 2018.82 SHEN, Z; et al. Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47 ⁄ c-Myb binding. J Cell Mol Med, v. 114, p. 1–2, 2010. SIBAI, B; DEKKER, G; KUPFERMINC, M. Pre-eclampsia. Lancet, v. 365, p.785-99, 2005. SIBAI, B.M. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol, v.102, n. 1, p.181-192, 2003. SKJAERVEN, R; et al. Recurrence of pre-eclampsia across generations:exploring fetal and maternal genetic components in a population based cohort. Br Med J, v.331, p.877-90, 2005. SPEERT, H. Obstetric and gynecologic milestones: Essays in eponymy. New York, Macmillan Company, 1958. STEEGERS, E.A; et al. Pre-eclampsia. Lancet, v. 376, p. 631-44, 2010. TANAKA, S.C.S.V; et al. Contribuição dos Polimorfismos no gene VEGF para o desenvolvimento das Síndromes Hipertensivas Gestacionais: uma revisão de literatura. REAS, 3, (2), p. 86-96, 2014. The National Institute for Health and Care Excellence. Hypertension in pregnancy: diagnosis and management. Clinical Guidelines CG2017. London, UK: NICE; 2011. TIAN T, et al. Association of two FOXP3 polymorphisms with breast cancer susceptibility in Chinese Han women. Cancer Manag Res, v. 26; n. 10, p. 867-872, 2018. TOLDI G; et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in preeclampsia. Am J Reprod Immunol, v. 66, n. 3, p. 223-9, 2011. TRANQUILLI, A.L, et al: Placental cytokines in the pathogenesis of preeclampsia and HELLP syndrome. Curr Womens Health Rev, n.1, p. 280-285, 2008. TROWSDALE, J.; BETZ, A. G. Mother’s little helpers : mechanisms of maternal-fetal tolerance. Nature Immunology, v. 7, n. 3, p. 241–246, 2006. US PREVENTIVE SERVICES TASK FORCE; et al. Screening for Preeclampsia: US Preventive Services Task Force Recommendation Statement. JAMA, v. 317, n.16, p.1661-1667, 2017. VALENZUELA FJ, et al. Pathogenesis of preeclampsia: the genetic component. J Pregnancy, 2012. VARGAS-ALARCÓN, G; et al. Interleukin-17A gene haplotypes are associated with risk of premature coronary artery disease in Mexican patients from the Genetics of Atherosclerotic Disease (GEA) study. PLoS One, v. 10, n. 1, 2015. VARGAS-ROJAS, M.I; et al. Th1, Th2, Th17 and Treg levels in umbilical cord blood in preeclampsia. J Matern Fetal Neonatal Med, v. 29, p. 1642–5, 2015.83 VEENSTRA van NIEUWENHOVEN, A.L, et al. The immunology of successful pregnancy. Hum Reprod Update, n. 9, p. 347-57, 2003. von DADELSZEN, P; MAGEE, L.A; ROBERTS, J.M. Subclassification of preeclampsia. Hypertens Pregnancy, v. 22, n. 2, p.143-8, 2003. WANG, H; et al. Role of IL-17 Variants in Preeclampsia in Chinese Han Women. PLoS One, v. 10, n. 10, 2015. WANG, Y., et al. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. Journal of Immunology, v. 185, n. 10, p. 5983–5992, 2010. WEI, J; et al. Cigarette smoking during pregnancy and preeclampsia risk: a systematic review and meta-analysis of prospective studies. Oncotarget, v. 6, n. 41, p. 43667-78, 2015. WEISS, K. M; et al. Linkage disequilibrium and the mapping of complex human traits. Trends Genet, v. 18, p. 19–24, 2002. WILLIAMS, P.J; PIPKIN, F.B. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Practice & Research Clinical Obstetrics and Gynaecology, v. 25, p. 405– 417, 2011. WRIGHT, D; et al. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol, v. 213, n. 1, p. 1-10, 2015. WU, Z; et al. Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clin Dev Immunol, p. 1-7, 2012. XIE, C; et al. A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. Cytokine, v. 56, n. 3, p. 550-9, 2011. 22019000. YIN, J; et al. Interleukin 17A rs4711998 A>G polymorphism was associated with a decreased risk of esophageal cancer in a Chinese population. Dis Esophagus, v. 27, n. 1, p. 87-92, 2014. ZHANG B; et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun, v. 374, p. 533-537, 2008. ZHOU, F; et al. Associations of genotypes and haplotypes of IL-17 with risk of gastric cancer in an eastern Chinese population. Oncotarget, v. 7, n. 50, p. 82384-82395, 2016. ZIDAN, H.E; et al. The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women. Cytokine, v. 108, p. 115-119, 2018. ZIDAN, H.E, et al. Interleukin-17 and leptin genes polymorphisms and their levels in relation to recurrent pregnancy loss in Egyptian females. Immunogenetics, v. 67, n. 11-12, p. 665-73, 2015. | por |
dc.rights | Acesso Aberto | por |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Polimorfismo Genético. | por |
dc.subject | Pré-eclâmpsia. | por |
dc.subject | Células Th17. | por |
dc.subject | Linfócitos T reguladores. | por |
dc.subject | Preeclampsia. | eng |
dc.subject | Th17 Cells. | eng |
dc.subject | T-Lymphocytes, Regulatory. | eng |
dc.subject.cnpq | Genética | por |
dc.title | Avaliação genética e funcional de FOXP3, IL17A e dosagem de citocinas pró e anti-inflamatórias em mulheres com pré-eclâmpsia | por |
dc.type | Tese | por |
Aparece nas coleções: | Programa de Pós-Graduação em Ciências da Saúde |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Tese Sarah C S V Tanaka.pdf | Tese Sarah C S V Tanaka | 1,98 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons