Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação em Educação Física
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/682
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCARNEIRO, Marcelo Augusto da Silva-
dc.creator.ID11309000611por
dc.creator.Latteshttp://lattes.cnpq.br/1325004758047112por
dc.contributor.advisor1ORSATTI, Fábio Lera-
dc.contributor.advisor1ID27865522819por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2185904879371466por
dc.date.accessioned2019-06-25T18:06:16Z-
dc.date.issued2019-02-22-
dc.identifier.citationCARNEIRO, Marcelo Augusto da Silva. Efeito de diferentes programas de treinamento de força em mulheres na pós-menopausa: alterações na composição corporal, capacidade físico-funcional e marcadores inflamatórios. 2019. 92f . Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2019 .por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/682-
dc.description.resumoA proposta do primeiro estudo foi investigar o efeito do treinamento de força com série cluster de carga alta (CSCA) ou carga baixa (CSCB) comparada ao treinamento de força com série tradicional de carga alta (TFCA) sobre o desempenho neuromuscular (massa, força e potência musculares, e taxa de desenvolvimento de força e de potência) em mulheres na pós-menopausa (PM). Cada perna das 23 PM foi randomizada e alocada em três grupos: TFCA (n = 12 pernas), CSCA (n = 14 pernas) e CSCB (n = 14 pernas). TFCA e CSCA realizaram três séries de quatro repetições máximas (1RM), 3s por ação muscular, com 1min e 30s de intervalo entre as séries. CSCB realizou três séries de seis repetições a 40% de 1RM (na maior velocidade possível) com 1min e 30s de intervalo entre as séries. Somente o CSCA e CSCB realizaram 30s de intervalo entre cada repetição. Todos os grupos treinaram duas vezes por semana durante oito semanas. Todos os grupos aumentaram a área muscular da coxa, força muscular máxima, média e pico de potência, média e pico de velocidade angular e taxa de desenvolvimento de potência dinâmica, sem diferença entre eles. CSCB foi superior ao TFCA e CSCA para melhorar o desempenho na taxa de desenvolvimento de força isométrica (TDFI) a 0–30, 0–50, 0–100 e 0–200ms. Esse estudo mostra que o TFCA, CSCA e CSCB são efetivos similarmente para melhorar o desempenho muscular (exceto para TDFI) em PM. Particularmente, CSCB é superior ao TFCA e CSCA para aumentar a TDFI (≤ 200ms) em PM. Referente ao segundo estudo sabe-se pouco sobre o impacto do treinamento de força com carga baixa (BC) sobre os biomarcadores inflamatórios, gordura corporal e capacidade físico-funcional. Esse estudo testou se o BC é uma estratégia alternativa para melhorar os biomarcadores inflamatórios, gordura visceral, massa muscular e capacidade físico-funcional em PM quando comparado ao treinamento de força com alta baixa (AC). Além disso, nós testamos se as mudanças nos biomarcadores inflamatórios são associadas com as alterações na composição corporal e função muscular. Esse estudo incluiu vinte e nove PM: BC (n = 14, 30-35 repetições) e AC (n = 15, 8-12 repetições). Os treinamentos foram realizados três vezes por semana, durante doze semanas. Não houve diferença entre os grupos para as mudanças na gordura, 1RM, capacidade físico-funcional (testes curtos), citocinas e adipocinas. No entanto, uma maior magnitude de aumento foi observada para a massa magra das pernas no grupo BC. Maior magnitude de aumento foi observada para o 6-min e redução para o 400-m no grupo AC. Houve uma superioridade para o AC em relação ao BC no aumento da HO-1. Além disso, o BC reduziu a eHSP70. Esses resultados sugerem que o BC é uma estratégia alternativa para melhorar os biomarcadores inflamatórios, gordura corporal, força muscular máxima e capacidade físico-funcional (testes curtos) em PM. Além disso, eHSP70 e HO-1 podem ser usados como biomarcadores para acompanhar as mudanças na massa muscular e capacidade físico-funcional.por
dc.description.abstractThe purpose of this first study was investigate effect of cluster-set training with higher load (CST-HL) or lower load (CST-LL) compared to traditional sets resistance training (TSRT) on muscle performance (muscle mass, strength, power and rate of force- and power- development) in postmenopausal women (PW). Each leg of 23 PW was randomly allocated into three groups: TSRT (n = 12 legs), CST-HL (n = 14 legs) and CST-LL (n = 14). TSRT and CST-HL performed three sets of four repetitions at 90% one repetition maximum (1RM), 3s per muscle action, with a 1.5-min rest interval between sets. CST-LL performed three sets of six repetitions at 40% 1RM (as fast and strongly as possible) with a 1.5-min rest interval between sets. Only CST-HL and CST-LL groups performed 30s interrepetition rest periods. All groups training twice-weekly during 8 weeks. All groups increase thigh muscle mass, maximal muscle strength, peak and mean power, peak and mean angular velocity and dynamic rate of power development, without difference between them. CST-LL was superior to TSRT and CST-HL for improving isometric RFD at 0–30, 0–50, 0–100 and 0–200ms. This study showed that TSRT, CST-HL and CST-LL are similarly effective at improving muscle performance (except to isometric RFD) in PW. Particularly, CST-LL is superior to TSRT and CST-HL in increasing isometric RFD (≤ 200ms) in PW. About to the second study less is known about the impact of lower-load resistance training (LL) on inflammatory biomarkers, body adiposity, and physical function. This study tested whether LL is an alternative strategy for improving inflammatory biomarkers, visceral adiposity, muscle mass and physical function in PW when compared with higher-load resistance training (HL). Moreover, we tested whether changes in inflammatory biomarkers are associated with alterations in body composition and muscular function. This study included 29 PW: LL (n = 14, 30-35 repetitions) and HL (n = 15, 8-12 repetitions). LL and HL were performed three times per week, during 12 weeks. Body composition was measured using DXA, maximal muscle strength by 1RM and physical function by sit-to-stand test, timed-up and go, gait speed at 4 meters, 400 meters (400-m) and six-minute walk test (6MWT). The blood indicators were measured by ELISA. There were no differences between the groups in the changes of adiposity, 1RM, physical function (short tests), cytokines, and adipokines. However, greater magnitude of increase in leg lean body mass was observed in LL. Greater magnitudes of increase in 6MWT and of decrease in 400M were observed in HL. There was a superiority of HL over LL in increasing logHO-1. Moreover, the LL decreased HSP70/72. These results suggest that LL is an alternative strategy to improve inflammatory biomarkers, body adiposity, maximal muscle strength and physical function (short tests) in PW. Moreover, eHSP70 and HO-1 may be used as biomarkers to track changes in muscle mass and physical function.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/4435/Dissert%20Marcelo%20A%20da%20S%20Carneiro.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Físicapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Educação Físicapor
dc.relation.referencesCruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing. 2010;39(4):412-23. Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PloS one. 2017;12(1):e0169548. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scandinavian journal of medicine & science in sports. 2010;20(1):49-64. Guadalupe-Grau A, Carnicero JA, Gomez-Cabello A, Gutierrez Avila G, Humanes S, Alegre LM, et al. Association of regional muscle strength with mortality and hospitalisation in older people. Age Ageing. 2015;44(5):790-5. Mijnarends D, Schols J, Halfens R, Meijers J, Luiking Y, Verlaan S, et al. Burden-of-illness of Dutch community-dwelling older adults with sarcopenia: Health related outcomes and costs. European Geriatric Medicine. 2016;7(3):276-84. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. Journal of the American Geriatrics Society. 2004;52(1):80-5. Pinedo-Villanueva R, Westbury LD, Syddall HE, Sanchez-Santos MT, Dennison EM, Robinson SM, et al. Health Care Costs Associated With Muscle Weakness: A UK Population-Based Estimate. Calcified tissue international. 2018. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S4-9. Mathus-Vliegen EM. Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: a guideline. Obes Facts. 2012;5(3):460-83. Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the environment. Exp Gerontol. 2018;105:10-8. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care. 2012;15(1):12-22. Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379-404. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435-42. Ogawa K, Kim HK, Shimizu T, Abe S, Shiga Y, Calderwood SK. Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones. 2012;17(3):349-59. Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738). Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle. 2015;6(4):278-86. Perez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Galvez BG. 'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016;594(12):3187-207. Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 2016;167(1):7-34. Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci. 2016;37(1):17-36. Son Y, Lee JH, Chung HT, Pae HO. Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev. 2013;2013:639541. Kim Y, Kim CS, Joe Y, Chung HT, Ha TY, Yu R. Quercetin Reduces Tumor Necrosis Factor Alpha-Induced Muscle Atrophy by Upregulation of Heme Oxygenase-1. J Med Food. 2018;21(6):551-9. Lu Y, Karagounis LG, Ng TP, Carre C, Narang V, Wong G, et al. Systemic and Metabolic Signature of Sarcopenia in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2019. Curcio F, Ferro G, Basile C, Liguori I, Parrella P, Pirozzi F, et al. Biomarkers in sarcopenia: A multifactorial approach. Exp Gerontol. 2016;85:1-8. Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocrine reviews. 2002;23(1):90-119. Sirola J, Rikkonen T. Muscle performance after the menopause. The journal of the British Menopause Society. 2005;11(2):45-50. Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond). 1993;84(1):95-8. Bondarev D, Laakkonen EK, Finni T, Kokko K, Kujala UM, Aukee P, et al. Physical performance in relation to menopause status and physical activity. Menopause. 2018;25(12):1432-41. Cooper R, Mishra G, Clennell S, Guralnik J, Kuh D. Menopausal status and physical performance in midlife: findings from a British birth cohort study. Menopause. 2008;15(6):1079-85. Kuh D, Bassey EJ, Butterworth S, Hardy R, Wadsworth ME. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: associations with physical activity, health status, and socioeconomic conditions. The journals of gerontology Series A, Biological sciences and medical sciences. 2005;60(2):224-31. Orsatti FL, de Oliveira EP, Burini RC. Relationship between plasma hormones and anthropometric measures of muscle mass in postmenopausal women. Handbook of Anthropometry: Springer; 2012. p. 1481-90. Steffl M, Sima J, Shiells K, Holmerova I. The increase in health care costs associated with muscle weakness in older people without long-term illnesses in the Czech Republic: results from the Survey of Health, Ageing and Retirement in Europe (SHARE). Clinical interventions in aging. 2017;12:2003-7. Liberman K, Forti LN, Beyer I, Bautmans I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Curr Opin Clin Nutr Metab Care. 2017;20(1):30-53. Csapo R, Alegre L. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta‐analysis. Scandinavian journal of medicine & science in sports. 2016;26(9):995-1006. Cavalcante EF, Ribeiro AS, do Nascimento MA, Silva AM, Tomeleri CM, Nabuco HC, et al. Effects of Different Resistance Training Frequencies on Fat in Overweight/Obese Older Women. International journal of sports medicine. 2018. Raymond MJ, Bramley-Tzerefos RE, Jeffs KJ, Winter A, Holland AE. Systematic review of high-intensity progressive resistance strength training of the lower limb compared with other intensities of strength training in older adults. Archives of physical medicine and rehabilitation. 2013;94(8):1458-72. Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Medicine and science in sports and exercise. 2010;42(5):902-14. Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exercise and sport sciences reviews. 2009;37(2):78-85. Wernbom M, Augustsson J, Raastad T. Ischemic strength training: a low-load alternative to heavy resistance exercise? Scandinavian journal of medicine & science in sports. 2008;18(4):401-16. Abellan van Kan G, Andre E, Bischoff Ferrari HA, Boirie Y, Onder G, Pahor M, et al. Carla Task Force on Sarcopenia: propositions for clinical trials. J Nutr Health Aging. 2009;13(8):700-7. Humphries B, Duncan MJ, Mummery WK. Prevalence and correlates of resistance training in a regional Australian population. British journal of sports medicine. 2010;44(9):653-6. Control CfD, Prevention. Strength training among adults aged>/= 65 years--United States, 2001. MMWR Morbidity and mortality weekly report. 2004;53(2):25. Burton E, Lewin G, Pettigrew S, Hill AM, Bainbridge L, Farrier K, et al. Identifying motivators and barriers to older community-dwelling people participating in resistance training: A cross-sectional study. Journal of sports sciences. 2017;35(15):1523-32. Burton E, Farrier K, Lewin G, Pettigrew S, Hill AM, Airey P, et al. Motivators and Barriers for Older People Participating in Resistance Training: A Systematic Review. Journal of aging and physical activity. 2017;25(2):311-24. Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al. Load-Specific Inflammation Mediating Effects of Resistance Training in Older Persons. J Am Med Dir Assoc. 2016;17(6):547-52. Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al. Effects of resistance training at different loads on inflammatory markers in young adults. Eur J Appl Physiol. 2017;117(3):511-9. Seynnes O, Fiatarone Singh MA, Hue O, Pras P, Legros P, Bernard PL. Physiological and functional responses to low-moderate versus high-intensity progressive resistance training in frail elders. The journals of gerontology Series A, Biological sciences and medical sciences. 2004;59(5):503-9. Cadore EL, Menger E, Teodoro JL, da Silva LXN, Boeno FP, Umpierre D, et al. Functional and physiological adaptations following concurrent training using sets with and without concentric failure in elderly men: A randomized clinical trial. Experimental gerontology. 2018;110:182-90. Nissen SB, Magidson T, Gross K, Bergstrom CT. Publication bias and the canonization of false facts. eLife. 2016;5. Rossato LT, Nahas PC, de Branco F, Martins FM, Souza AP, Carneiro MA, et al. Higher protein intake does not improve lean mass gain when compared with RDA recommendation in postmenopausal women following resistance exercise protocol: A randomized clinical trial. Nutrients. 2017;9(9):1007. Franco CMC, Carneiro M, Alves LTH, Junior GNO, de Sousa JFR, Orsatti FL. Lower-Load is More Effective Than Higher-Load Resistance Training in Increasing Muscle Mass in Young Women. Journal of strength and conditioning research. 2019. da Silva LXN, Teodoro JL, Menger E, Lopez P, Grazioli R, Farinha J, et al. Repetitions to failure versus not to failure during concurrent training in healthy elderly men: A randomized clinical trial. Experimental gerontology. 2018;108:18-27. Perreault K, Courchesne-Loyer A, Fortier M, Maltais M, Barsalani R, Riesco E, et al. Sixteen weeks of resistance training decrease plasma heat shock protein 72 (eHSP72) and increase muscle mass without affecting high sensitivity inflammatory markers' levels in sarcopenic men. Aging Clin Exp Res. 2016;28(2):207-14. Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: Part 1--Correlation within subjects. BMJ. 1995;310(6977):446. Njemini R, Forti LN, Mets T, Van Roie E, Coudyzer W, Beyer I, et al. Sex difference in the heat shock response to high external load resistance training in older humans. Exp Gerontol. 2017;93:46-53. Ogawa K, Sanada K, Machida S, Okutsu M, Suzuki K. Resistance exercise training-induced muscle hypertrophy was associated with reduction of inflammatory markers in elderly women. Mediators Inflamm. 2010;2010:171023. Periard JD, Ruell P, Caillaud C, Thompson MW. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity. Cell Stress Chaperones. 2012;17(3):375-83. Buchner DM, Larson EB, Wagner EH, Koepsell TD, De Lateur BJ. Evidence for a non-linear relationship between leg strength and gait speed. Age and ageing. 1996;25(5):386-91. Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps femoris strength. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2002;57(4):B144-B52. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2000;55(4):M221-M31. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. New England journal of medicine. 1995;332(9):556-62. McGinn AP, Kaplan RC, Verghese J, Rosenbaum DM, Psaty BM, Baird AE, et al. Walking speed and risk of incident ischemic stroke among postmenopausal women. Stroke. 2008;39(4):1233-9. Vestergaard S, Patel KV, Bandinelli S, Ferrucci L, Guralnik JM. Characteristics of 400-meter walk test performance and subsequent mortality in older adults. Rejuvenation research. 2009;12(3):177-84. Yazdanyar A, Aziz MM, Enright PL, Edmundowicz D, Boudreau R, Sutton-Tyrell K, et al. Association between 6-minute walk test and all-cause mortality, coronary heart disease–specific mortality, and incident coronary heart disease. Journal of aging and health. 2014;26(4):583-99. Francis P, Mc Cormack W, Lyons M, Jakeman P. Age-Group Differences in the Performance of Selected Tests of Physical Function and Association With Lower Extremity Strength. J Geriatr Phys Ther. 2019;42(1):1-8. Tutakhail A, Nazary QA, Lebsir D, Kerdine-Romer S, Coudore F. Induction of brain Nrf2-HO-1 pathway and antinociception after different physical training paradigms in mice. Life Sci. 2018;209:149-56. Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxidants & redox signaling. 2005;7(1-2):80-91. Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci. 2004;59(5):478-93. Haines DD, Lekli I, Teissier P, Bak I, Tosaki A. Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: focus on cardiovascular, lung, neurological and kidney disorders. Acta Physiol (Oxf). 2012;204(4):487-501.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAdiposidade.por
dc.subjectInflamação.por
dc.subjectIntervalo entre as repetições.por
dc.subjectMassa muscular.por
dc.subjectMulheres idosas.por
dc.subjectAdiposity.eng
dc.subjectInflammation.eng
dc.subjectInterrepetition rest.eng
dc.subjectMuscle mass.eng
dc.subjectOlder women.por
dc.subject.cnpqEducação Físicapor
dc.titleEfeito de diferentes programas de treinamento de força em mulheres na pós-menopausa: alterações na composição corporal, capacidade físico-funcional e marcadores inflamatóriospor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação em Educação Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Marcelo A da S Carneiro.pdfDissert Marcelo A da S Carneiro1,13 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons