Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/799
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRODRIGUES, Isabela Fernandes-
dc.creator.ID08499913660por
dc.creator.Latteshttp://lattes.cnpq.br/3026408289407890por
dc.contributor.advisor1OLIVEIRA JUNIOR, Robson Tadeu Soares de-
dc.contributor.advisor1ID18129008807por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7783176519114288por
dc.contributor.advisor-co1PAULINO, Tony de Paiva-
dc.contributor.advisor-co1ID92251048634por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3179978364259887por
dc.date.accessioned2019-08-01T11:56:35Z-
dc.date.issued2017-06-23-
dc.identifier.citationRODRIGUES, Isabela Fernandes. Investigação das propriedades biocidas de nanopartículas de prata preparadas em meio de citrato de sódio. 2017. 80f . Dissertação (Mestrado em Química) - Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/799-
dc.description.resumoA prata na forma de nanopartículas possui elevada razão área volume, o que eleva grandemente suas propriedades antimicróbiais. Apresenta ação contra uma ampla faixa de microrganismos patogênicos como bactérias Gram Negativas e Gram Positivas, algas e fungos. Nanopartículas de prata podem ser obtidas empregando-se agentes redutores como álcoois, carboidratos, ácido tartárico, ácido ascórbico, etc. O presente trabalho teve como objetivo preparar nanopartículas de prata para investigação biocida. Para isso, realizou-se a síntese das nanopartículas através da redução por citrato de sódio na presença do surfactante dodecilsulfato de sódio. A caracterização das nanopartículas de prata foi feita através de espectroscopia UV-Vis. Obteve-se nanopartículas com diâmetro entre 10 e 50 nm. Foi feito um planejamento fatorial 2³ utilizando como variáveis as concentrações dos reagentes e os comprimentos de onda característicos das bandas de plasmons de superfície das nanopartículas de prata. Através de superfícies de resposta obteve-se uma relação entre as concentrações dos reagentes utilizados na síntese e os tamanhos das nanopartículas formadas. Como o tamanho das nanopartículas influencia diretamente nas propriedades biocidas, foram empregadas nanopartículas na faixa de 10-14 nm sobre Candida Albicans. Buscou-se avaliar também a toxicidade da prata em suspensão e veiculada a lipossomos como carreadores em meio planctônico e biofilme. Concluiu-se que as nanopartículas de prata em suas diferentes microformulações (suspensão e lipossomo) possuíram atividade biocida sobre a C.albicans tanto em meio planctônico quanto em biofilme.por
dc.description.abstractSilver nanoparticles have a high area/volume ratio, therefore their antimocrobial property is greatly increased. They exhibit action against a wide range of pathogenic microorganisms such as gram negative and gram positive bacteria, algae and fungi. Silver ions can be reduced by a wide range of organic substances such as alcohols, carbohydrates, tartaric acid, ascorbic acid, etc. Synthesis of the nanoparticles was carried out using sodium citrate as reducing agent in the presence of the sodium dodecylsulfate. Characterization of silver nanoparticles was performed by UV-Vis spectroscopy, where it was obtained nanoparticles with diameter of 10-50 nm. A factorial design of 2³ was done using as variables the reagent concentrations and the surface plasmon absorption spectra of silver nanoparticles. Through response surfaces a relationship was obtained between the reagents concentrations and the nanoparticles sizes. The size of the nanoparticles directly influence their biocidal properties, therefore, nanoparticles in the range of 10-14 nm were used on Candida albicans. In this way, the toxicity of silver suspensions and silver encapsulated by liposomes as carriers in plankton and biofilm medium was evaluated. It was concluded that the silver nanoparticles in their different microforms (suspension and liposome) presented activity on C. albicans in both planktonic and biofilm environments.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/5249/Dissert%20Isabela%20F%20Rodrigues.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências Exatas, Naturais e Educação - ICENEpor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação Multicêntrico em Química de Minas Geraispor
dc.relation.referencesAbid, J.P. et al., 2002. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chemical communications (Cambridge, England), (7), pp.792–793. Abou El-Nour, K.M.M. et al., 2010. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3(3), pp.135–140. Albanese, A., Tang, P.S. & Chan, W.C.W., 2012. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering, 14(1), pp.1–16. Available at: http://www.annualreviews.org/doi/10.1146/annurev-bioeng-071811-150124. Araújo, E.A. et al., 2015. Sanitização de cenoura minimamente processada com nanopartículas de prata. Ciência Rural, pp.1681–1687. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782015000901681&lang=pt. Atiyeh, B.S. et al., 2007. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33(2), pp.139–148. Bao, Z., Bruening, M.L. & Baker, G.L., 2006. Rapid growth of polymer brushes from immobilized initiators. Journal of the American Chemical Society, 128(28), pp.9056–9060. BARROS NETO, B.., SCARMINIO, I.S.. & BRUNS, R.E., 2001. Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria, Available at: http://books.google.com.br/books?id=FDnT9ygeOccC&pg=PA79&lpg=PA79&dq=como+fazer+experimentos+doi+Neto+barros&source=bl&ots=EGYrSdmUGw&sig=-FFC0dBw0TLT7iIJ0-fhFjtAL6I&hl=pt-BR&sa=X&ei=TPwRVMfKNoayggTyooGADw&ved=0CGkQ6AEwCA#v=onepage&q=como fazer experiment. Brasil, J.L. et al., 2007. Planejamento estatístico de experimentos como uma ferramenta para otimização das condições de biossorção de Cu(II) em batelada utilizando-se casca de nozes pecã como biossorvente. Quimica Nova, 30(3), pp.548–553. Brust, M. et al., 1995. Synthesis and Reactions of Functionalized Gold Nanoparticles. Journal of the Chemical Society-Chemical Communications, (16), pp.1655–1656. Brust, M. et al., 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc., Chem. Commun., 0(7), pp.801–802. Available at: http://xlink.rsc.org/?DOI=C39940000801. Cammarata, R.C., 1996. Nanomaterials : Synthesis , Properties and Applications Edited by A S Edelstein Institute of Physics Publishing Bristol and Philadelphia. Materials Science, 580. Carlson, C. et al., 2008. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. Journal of Physical Chemistry B, 112(43), pp.13608–13619. Carpena, D. & Dal, C., 2005. Contribuições ao planejamento de experimentos em projetos de pesquisa de engenharia civil. Ambiente Construído, pp.37–49. Chen, M. & Nikles, D.E., 2002. Synthesis of spherical FePd and CoPt nanoparticles. Journal of Applied Physics, 91(10 I), pp.8477–8479. CUNICO, M.W.M. et al., 2008. PLANEJAMENTO FATORIAL: UMA FERRAMENTA ESTATÍSTICA VALIOSA PARA A DEFINIÇÃO DE PARÂMETROS EXPERIMENTAIS EMPREGADOS NA PESQUISA CIENTÍFICA. Visão Acadêmica, 9(1). Available at: http://revistas.ufpr.br/academica/article/view/14635. Deepak, V. et al., 2011. Synthesis of gold and silver nanoparticles using purified URAK. Colloids and Surfaces B: Biointerfaces, 86(2), pp.353–358. Duan, X. & Li, Y., 2013. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 9(9–10), pp.1521–1532. Elsupikhe, R.F. et al., 2015. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Research Letters, 10(1). Erdem, B. et al., 2000. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. Journal of Polymer Science, Part A: Polymer Chemistry, 38(24), pp.4419–4430. Esteves, A.C. et al., 2005. Polymer encapsulation of CdE (E = S, se) quantum dot ensembles via in-situ radical polymerization in miniemulsion. J. Nanosci .Nanotechnol, 5(5), pp.766–771. Esteves, A.C.C. et al., 2007. Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small, 3(7), pp.1230–1236. Faraday, M., 1857. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philosophical Transactions of the Royal Society of London, 147(0), pp.145–181. Available at: http://rstl.royalsocietypublishing.org/cgi/doi/10.1098/rstl.1857.0011. FERNANDES, P.É., 2014. Síntese, Caracterização E Ação Antimicrobiana De Nanopartículas De Prata. Fievet, F. et al., 1989. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 32–33(PART 1), pp.198–205. Fleischhaker, F. & Zentel, R., 2005. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chemistry of Materials, 17(6), pp.1346–1351. Ganaie, S.U., Abbasi, T. & Abbasi, S.A., 2015. Green Synthesis of Silver Nanoparticles Using an Otherwise Worthless Weed Mimosa ( Mimosa pudica ): Feasibility and Process Development Toward Shape/Size Control. Particulate Science and Technology, 33(6), pp.638–644. Available at: http://www.tandfonline.com/doi/full/10.1080/02726351.2015.1016644. Garcia, M.V.D., 2011. Síntese , caracterização e estabilização de nanopartículas de prata para aplicações bactericidas em têxteis. Universidade Estadual de Campinas, Campinas, p.77. GIBELLI, I.C., 2012. Ação Antibacteriana de Nanopartículas d e Prata em Poli ( ácido lático ) – PLA e estudo da Biodegradação. , p.62. Gole, A., Sainkar, S.R. & Sastry, M., 2000. Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers. Chemistry of Materials, 12(5), pp.1234–1239. Gómez Villarraga, F., 1857. Nanopartículas Metálicas Y Sus Aplicaciones. Revista Digita Innovación y Ciencia. Available at: https://innovacionyciencia.com/documentos/nanoparticulas_metalicas_y_sus_aplicaciones.pdf. Gupta, A.K. et al., 2003. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Transactions on Nanobioscience, 2(4), pp.255–261. Gurav, A.S. et al., 1994. Generation of nanometer-size fullerene particles via vapor condensation. Chemical Physics Letters, 218(4), pp.304–308. Gurunathan, S. et al., 2009. Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), pp.6341–6350. Available at: http://dx.doi.org/10.1016/j.biomaterials.2009.08.008. Guzmán, M.G., Dille, J. & Godet, S., 2008. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Available at: http://www.waset.ac.nz/journals/ijcbe/v2/v2-3-21.pdf. Hambrock, J. et al., 2002. A non-aqueous organometallic route to highly monodispersed copper nanoparticles using [Cu(OCH(Me)CH2NMe2)2]. Chemical Communications, 1(1), pp.68–69. Available at: http://xlink.rsc.org/?DOI=b108797e. He, R. et al., 2002. Preparation of polychrome silver nanoparticles in different solvents. Journal of Materials Chemistry, 12(12), pp.3783–3786. Available at: http://xlink.rsc.org/?DOI=b205214h. Henglein, A., 1993. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. Journal of Physical Chemistry, 97(21), pp.5457–5471. Hosseinpour-Mashkani, S.M. & Ramezani, M., 2014. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Materials Letters, 130. Huang, X. et al., 2007. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (London, England), 2(5), pp.681–693. Hulteen, J.C. et al., 1999. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. Journal of Physical Chemistry B, 103(19), pp.3854–3863. Hyeon, T. et al., 2001. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society, 123(51), pp.12798–12801. Jain, P.K., Qian, W. & El-Sayed, M.A., 2006. Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. Journal of the American Chemical Society, 128(7), pp.2426–2433. Jana, N.R., Chen, Y.F. & Peng, X.G., 2004. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of Materials, 16(20), pp.3931–3935. Jana, N.R., Gearheart, L. & Murphy, C.J., 2001. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 17(22), pp.6782–6786. Jana, N.R. & Peng, X., 2003. Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals. Journal of the American Chemical Society, 125(47), pp.14280–14281. Jhuang, Y.Y. & Cheng, W.T., 2016. Fabrication and characterization of silver/titanium dioxide composite nanoparticles in ethylene glycol with alkaline solution through sonochemical process. Ultrasonics Sonochemistry, 28, pp.327–333. Jiang, G.Q. et al., 2007. Signal enhancement and tuning of surface plasmon resonance in Au nanoparticle/polyelectrolyte ultrathin films. Journal of Physical Chemistry C, 111(50), pp.18687–18694. Jo, D.H. et al., 2015. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), pp.1603–1611. Joo, J. et al., 2003. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society, 125(36), pp.11100–11105. Joumaa, N. et al., 2006. Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir, 22(4), pp.1810–1816. Kelly, K.L. et al., 2003. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 107(3), pp.668–677. Available at: http://pubs.acs.org/doi/abs/10.1021/jp026731y. Kim, E.K. et al., 2009. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. Journal of Cultural Heritage, 10(2), pp.214–221. Klabunde, K.J. & Richards, R., 2001. Nanoscale Materials in Chemistry, Kmis, F.E., Fissan, H. & Rellinghaus, B., 2000. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 69, pp.329–334. Koole, R. et al., 2008. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chemistry of Materials, 20(7), pp.2503–2512. Kreibig, U. & Vollmer, M., 1995. Optical Properties of Metal Clusters, Available at: http://xlink.rsc.org/?DOI=b304116f. Leung, A.B., Suh, K.I. & Ansari, R.R., 2006. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Applied Optics, 45(10), p.2186. Available at: https://www.osapublishing.org/abstract.cfm?URI=ao-45-10-2186. De Lima, T.H., 2011. Dissertação de Mestrado Modificação do cimento ortopédico com nanopartículas de prata. Lin, P.C. et al., 2014. Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32(4), pp.711–726. Link, S. & El-Sayed, M.A., 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annual Review of Physical Chemistry, 54(1), pp.331–366. Available at: http://www.annualreviews.org/doi/10.1146/annurev.physchem.54.011002.103759%5Cnhttp://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.54.011002.103759. Liz-Marzán, L.M., 2006. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 22(1), pp.32–41. Lu, A.H., Salabas, E.L. & Schüth, F., 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie - International Edition, 46(8), pp.1222–1244. M.Raffi, F.Hussain, T.M.Bhatti, J.I.Akhter, A.H. and M.M.H., 2008. Antibacterial Characterization of Silver Nanoparticles against E.coli ATCC-15224. J. Mater. Sci. Technol., 24(2), pp.192–196. Mafune, F. et al., 2000. Formation and size control of sliver nanoparticles by laser ablation in aqueous solution. Journal of Physical Chemistry B, 104(39), pp.9111–9117. Magnusson, M.H. et al., 1999. Size-selected gold nanoparticles by aerosol technology. Nanostructured Materials, 12(1), pp.45–48. Malik, M.A., O’Brien, P. & Revaprasadu, N., 2002. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chemistry of Materials, 14(5), pp.2004–2010. Mallick, K., Witcomb, M.J. & Scurrell, M.S., 2004. Polymer stabilized silver nanoparticles: A photochemical synthesis route. Journal of Materials Science, 39(14), pp.4459–4463. Available at: http://link.springer.com/10.1023/B:JMSC.0000034138.80116.50. Martins, M.A. et al., 2007. Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology, 18(21). Martins, M.A. & Trindade, T., 2012. Os nanomateriais e a descoberta de novos mundos na bancada do químico. Quimica Nova, 35(7), pp.1434–1446. Marutani, E. et al., 2004. Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer, 45(7), pp.2231–2235. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0032386104001235. Marzán, L.L. & Philipse, A.P., 1994. Synthesis of platinum nanoparticles in aqueous host dispersions of inorganic (imogolite) rods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 90(1), pp.95–109. Mcdonnell, G. & Russell, A.D., 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12(1), pp.147–179. Melo, M.A. et al., 2012. Preparação de nanopartículas de prata e ouro: Um método simples para a introdução da nanociência em laboratório de ensino. Quimica Nova, 35(9), pp.1872–1878. Morones, J.R. et al., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), pp.2346–2353. Available at: http://stacks.iop.org/0957-4484/16/i=10/a=059?key=crossref.e77be5b8bed6ecad694ec81776ef56fe. Mulfinger, L. et al., 2007a. Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 84(2), pp.322–325. Available at: http://dx.doi.org/10.1021/ed084p322%5Cnhttp://dx.doi.org/10.1021/ed084p322%5Cnhttp://pubs.acs.org/doi/abs/10.1021/ed084p322. Mulfinger, L. et al., 2007b. Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 84(2), pp.322–325. Murdock, R.C. et al., 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), pp.239–253. Murray, C.B., Norris, D.J. & Bawendi, M.G., 1993. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. Journal of the American Chemical Society, 115(19), pp.8706–8715. NETO, E.A.B., RIBEIRO, C. & ZUCOLOTTO, V., 2008. Síntese de nanopartículas de prata para aplicação na sanitização de embalagens. Comunicado Técnico Embrapa Instrumentação, 99, pp.1–4. Available at: http://agris.fao.org/agris-search/search.do?recordID=BR2008131734. Noginov, M.A. et al., 2007. The effect of gain and absorption on surface plasmons in metal nanoparticles. Applied Physics B: Lasers and Optics, 86(3), pp.455–460. Nouailhat, A., 2010. An introduction to nanoscience and nanotechnology, Ohno, K. et al., 2005. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules, 38(6), pp.2137–2142. Panácek, a et al., 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), pp.6333–6340. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19698988. Park, J. et al., 2007. Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie - International Edition, 46(25), pp.4630–4660. Park, J. et al., 2004. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3(12), pp.891–895. PERALTA-ZAMORA, P., MORAIS, J.L. DE & NAGATA, N., 2005. Por que otimização multivariada? Engenharia Sanitaria Ambiental, 10(2), pp.106–110. PEREIRA FILHO, E.R., 2015. Planejamento fatorial em química: maximizando a obtenção de resultados. EdUFSCar, p.88p. Peres, M. et al., 2005. A green-emitting CdSe/poly(butyl acrylate) nanocomposite. Nanotechnology, 16(9), pp.1969–1973. Perrault, S.D. & Chan, W.C.W., 2009. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society, 131(47), pp.17042–17043. Pleus, R.C., 2011. Guidance on physicochemical characterization for manufacture nano-objects submitted for toxicological testing. In Proceedings of the IEEE Conference on Nanotechnology. pp. 20–21. Pluym, T.C. et al., 1993. Solid silver particle production by spray pyrolysis. Journal of Aerosol Science, 24(3), pp.383–392. Sastry, M., Mayya, K.S. & Bandyopadhyay, K., 1997. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127(1–3), pp.221–228. Schierholz, J.M., Beuth, J. & Pulverer, G., 1999. Silver coating of medical devices for catheter-associated infections? [3]. American Journal of Medicine, 107(1), pp.101–102. Schmidt-Ott, A., 1988. New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol Science, 19(5). Selvan, S.T. et al., 2007. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angewandte Chemie - International Edition, 46(14), pp.2448–2452. Seo, W.S. et al., 2003. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Advanced Materials, 15(10), pp.795–797. Available at: http://onlinelibrary.wiley.com/store/10.1002/adma.200304568/asset/795_ftp.pdf?v=1&t=gqdrgzos&s=75e81d2a19513c5ae8494a4ad0ede06e91362930. Sergeev, G.B. et al., 1999. Cryosynthesis and properties of metal-organic nanomaterials. Nanostructured Materials, 12(5), pp.1113–1116. Shameli, K. et al., 2010. Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. International Journal of Nanomedicine, 5(1), pp.1067–1077. Shevchenko, E. V et al., 2002. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc., 124(38), pp.11480–11485. Sifontes, Á.B. et al., 2010. Preparación de nanopartículas de plata en ausencia de polimeros estabilizantes. Quimica Nova, 33(6), pp.1266–1269. Sill, K. & Emrick, T., 2004. Nitroxide-Mediated Radical Polymerization from CdSe Nanoparticles. Chemistry of Materials, 16(7), pp.1240–1243. Available at: http://dx.doi.org/10.1021/cm035077b%5Cnhttp://pubs.acs.org/doi/pdfplus/10.1021/cm035077b. Skaff, H. & Emrick, T., 2004. Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angewandte Chemie - International Edition, 43(40), pp.5383–5386. Soon, G.K. et al., 2007. Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. Journal of the American Chemical Society, 129(41), pp.12571–12584. Sriram, M.I. et al., 2010. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. International Journal of Nanomedicine, 5(1), pp.753–762. Staquicini, F.I. et al., 2011. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. Journal of Clinical Investigation, 121(1), pp.161–173. Sun, S. & Zeng, H., 2002. Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, (31), pp.8204–8205. Available at: http://pubs.acs.org/doi/abs/10.1021/ja026501x. Talapin, D. V. et al., 2001. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano Letters, 1(4), pp.207–211. Taleb, a, Petit, C. & Pileni, M.P., 1998. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem B, 102(12), pp.2214–2220. Available at: http://pubs.acs.org/doi/abs/10.1021/jp972807s%5Cnpapers2://publication/uuid/2178563E-6702-4D6F-A4CB-2FBDD2312CBC. Talebi, J., Halladj, R. & Askari, S., 2010. Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. JOURNAL OF MATERIALS SCIENCE, 45(12), pp.3318–3324. Tao, A., Sinsermsuksakul, P. & Yang, P., 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie - International Edition, 45(28), pp.4597–4601. Teng, X. & Yang, H., 2004. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. Journal of Materials Chemistry, 14(4), pp.774–779. Available at: http://xlink.rsc.org/?DOI=b311610g. Tiarks, F., Landfester, K. & Antonietti, M., 2001. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization. Langmuir, 17(19), pp.5775–5780. Tomaszewska, E. et al., 2013. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013. Tsuji, M. et al., 2005. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal, 11(2), pp.440–452. Underwood, S. & Mulvaney, P., 1994. Effect of the Solution Refractive Index on the Color of Gold Colloids. Langmuir, 10(10), pp.3427–3430. Ung, T., Liz-Marzán, L.M. & Mulvaney, P., 2002. Gold nanoparticle thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202(2–3), pp.119–126. Wei, Q.H. et al., 2004. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Letters, 4(6), pp.1067–1071. Wiley, B. et al., 2005. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry-a European Journal, 11(2), pp.454–463. Wong, K.K.Y. et al., 2009. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem, 4(7), pp.1129–1135. Wuithschick, M. et al., 2015. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano, 9(7), pp.7052–7071. Yamamoto, M. & Nakamoto, M., 2003. Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine. Journal of Materials Chemistry, 13, p.2064. Yu, W.W. et al., 2004. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chemical Communications, (20), p.2306. Available at: http://xlink.rsc.org/?DOI=b409601k. Zarbin, A.J.G., 2007. (Nano) materials chemistry. Quimica Nova, 30, pp.1469–1479. Zhang, Q. et al., 2011. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 133(46), pp.18931–18939. Zhu, J.J. et al., 2001. Preparation of silver nanorods by electrochemical methods. Materials Letters, 49(2), pp.91–95. Zodrow, K. et al., 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 43(3), pp.715–723.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectNanopartículas de prata.por
dc.subjectLipossomos.por
dc.subjectCandida albicans.por
dc.subjectSilver Nanoparticles.eng
dc.subjectLiposomes.eng
dc.subjectCandida albicans.eng
dc.subject.cnpqFísica Químicapor
dc.titleInvestigação das propriedades biocidas de nanopartículas de prata preparadas em meio de citrato de sódiopor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Isabela F Rodrigues.pdfDissert Isabela F Rodrigues1,47 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons