Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação em Ciências da Saúde
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/828
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMUNDIM, Fabiano Vilela-
dc.creator.ID03183772680por
dc.creator.Latteshttp://lattes.cnpq.br/3674807558690963por
dc.contributor.advisor1MURTA, Eddie Fernando Candido-
dc.contributor.advisor1ID47668032649por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5724192420139830por
dc.contributor.advisor-co1MICHELIN, Márcia Antoniazi-
dc.contributor.advisor-co1ID11828808865por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2599409028588669por
dc.date.accessioned2019-08-20T20:41:50Z-
dc.date.issued2017-04-26-
dc.identifier.citationMUNDIM, Fabiano Vilela. Avaliação do perfil de citocinas na secreção endocervical de pacientes com nic II e III tratadas com interferon alfa peguilado. 2017. 125f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/828-
dc.description.resumoA neoplasia intraepitelial cervical como consequência da transformação carcinogênica causada pelo HPV é hoje um dos principais fatores de intercorrências no aparelho genital feminino. Além do câncer invasivo do colo uterino; intervenções do tratamento, como conização e LEEP podem levar a complicações obstétricas, com consequente infertilidade. Avanços na compreensão do sistema imune têm levado a novas estratégias de tratamento. As citocinas são um grupo de moléculas envolvidas na emissão de sinais entre as células durante as respostas imunes, e entre elas, o interferon possui papel imprescindível nos mecanismos de proteção antiviral, exercendo potentes efeitos imunomodulatórios e no controle do crescimento celular. Estimular o sistema imunológico a reconhecer células modificadas ou infectadas tem sido um grande desafio. Dessa maneira, foi avaliada a resposta imune local nas secreções de pacientes com lesões neoplásicas de alto grau tratadas com IFN-α 2b peguilado. Para tanto, foi realizada uma terapia com seis doses da medicação (Interferon α 2b peguilado) em 16 pacientes diagnosticadas com lesão de alto grau; e em cada aplicação do tratamento, durante a inspeção especular foram coletadas amostras das secreções para dosagem de citocinas (IL-2, IL-12, TNF, IFN-γ, TGF-β, IL-4, IL-10) por ensaio imunoenzimático (ELISA). Como metodologia do estudo, as pacientes foram divididas em três grupos, (Geral, Boa e Má respostas) baseadas nos resultados das biópsias coletadas durante o tratamento; antes da terapia (1ª aplicação) e após o tratamento (6ª aplicação). Para a avaliação dos resultados utilizou-se os testes estatísticos de Friedman e Mann-Whitney considerando-se a amostragem significante quando p≤0,05. Diante dos resultados obtidos, verificou-se que 43,75% das pacientes obtiveram resposta clínica satisfatória. Na avaliação das citocinas, foram observadas grandes variações durante a terapia, com alterações significativas durante todo o tratamento e entre os períodos de aplicações, das quais podemos destacar o TGF-β (Grupo geral), com diminuição significativa durante o tratamento com todas as pacientes (p=0,035), e entre a 1ª e 4ª e 4ª e 5ª aplicações (p=0,0420/p=0,0285). A citocina TNF-α no grupo de pacientes com Boa resposta à terapia apresentou o mesmo perfil de diminuição estatisticamente relevante (p=0,011/p=0,070/p=0,0379) durante os períodos de aplicação (1ª e 6ª, 2ª e 6ª e 4ª e 6ª aplicações), com tendência a manter esse aspecto no término da terapia. Na análise da IL-4 entre no grupo de pacientes com Má resposta, foram verificados resultados significantes (p=0,018/p=0,0258) com uma diminuição durante as aplicações (1ª e 5ª e 1ª e 6ª aplicações). Além disso, observou-se também que essa citocina apresentou dados significantes na 1ª aplicação quando comparados os dois grupos de pacientes (Boa e Má respostas) durante os períodos da terapia (p=0,0229). Esses dados nos permitem concluir que o perfil predominante naquelas pacientes que tiveram falha na terapia parece estar associado com níveis aumentados da IL-4, no início do tratamento; e que ainda uma diminuição do TGF-β e do TNF-α podem estar relacionados com aquelas pacientes que responderam ao tratamento. Contudo, de uma maneira geral, a imunoterapia com IFN α-2b peguilado mostrou-se satisfatória quando comparamos com outros trabalhos similares na literatura, sugerindo que esse tratamento possa ser uma opção terapêutica no futuro, principalmente para mulheres jovens, onde tratamentos agressivos das neoplasias e suas complicações possam ser evitados.por
dc.description.abstractCervical intraepithelial neoplasia as a consequence of the carcinogenic transformation caused by HPV is now one of the main intercurrent factors in the female genital tract. In addition to invasive cervical cancer; interventions such as conization and LEEP can lead to obstetric complications, with consequent infertility. Advances in understanding the immune system have led to new treatment strategies. Cytokines are a group of molecules involved in the emission of signals between cells during immune responses, and among them, interferon plays an essential role in antiviral protection mechanisms, exerting potent immunomodulatory effects and in controlling cell growth. Stimulating the immune system to recognize modified or infected cells has been a major challenge. In this way, the local immune response in the secretions of patients with high grade neoplastic lesions treated with pegylated IFN-α 2b was evaluated. A six-dose therapy (Interferon α 2b pegylated) was performed in 16 patients diagnosed with high-grade lesions; (IL-2, IL-12, TNF, IFN-γ, TGF-β, IL-4, IL-10) were collected during the specular inspection by enzyme-linked immunosorbent assay (ELISA). As a study methodology, the patients were divided into three groups (General, Good and Bad responses) based on the results of the biopsies collected during the treatment; before therapy (1st application) and after treatment (6th application). The Friedman and Mann-Whitney statistical tests were used for the evaluation of the results, considering the significant sampling when p≤0.05. In view of the results obtained, it was verified that 43.75% of the patients had a satisfactory clinical response. In the evaluation of cytokines, large variations were observed during therapy, with significant changes throughout the treatment and between the application periods, of which we can highlight the TGF-β (General group), with a significant decrease during the treatment with all patients (P = 0.035), and between the 1st and 4th and 4th and 5th applications (p = 0.0420 / p = 0.0285). The cytokine TNF-α in the group of patients with good response to therapy had the same statistically significant reduction profile (p = 0.011 / p = 0.070 / p = 0.0379) during the application periods (1st and 6th, 2nd and 6th and 4th and 6th applications), tending to maintain this aspect at the end of therapy. In the analysis of IL-4 among the group of patients with poor response, significant results (p = 0.018 / p = 0.0258) were observed with a decrease during the applications (1st and 5th and 1st and 6th applications). In addition, it was also observed that this cytokine presented significant data in the 1st application when comparing the two groups of patients (Good and Bad responses) during the periods of therapy (p = 0.0229). These data allow us to conclude that the predominant profile in those patients who failed therapy appears to be associated with increased levels of IL-4 at the start of treatment; and that even a decrease in TGF-β and TNF-α may be related to those patients who responded to treatment. However, immunotherapy with pegylated IFNα-2b has been shown to be satisfactory when compared to other similar studies in the literature, suggesting that this treatment may be a therapeutic option in the future, especially for young women, where aggressive treatment of neoplasias and its complications can be avoided.eng
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Geraispor
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/5477/Dissert%20Fabiano%20V%20Mundim.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências da Saúdepor
dc.relation.referencesABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. Imunologia Celular e Molecular. 7ª A edição ed. Rio de Janeiro - RJ: Elsevier Inc., 2012. ADEFUYE, P. O. et al. Trials and projects on cervical cancer and human papillomavirus prevention in sub-saharan Africa. Vaccine, v. 31, n. S5, p. 1–2, 2013. AGUIAR, L. S. et al. Avaliação crítica das nomenclaturas diagnósticas dos exames citopatológicos cervicais utilizadas no Sistema Único de Saúde (SUS); Critical evaluation of the diagnostic nomenclatures of cervical cytopathological exams used in the Brazilian Unified Heal. Rev.bras.ginecol.obstet, v. 33, n. 3, p. 144–149, 2011. AIDÉ, S. et al. Neoplasia intraepitelial cervical: Cervical intraepithelial neoplasia. DST - Jornal brasileiro de doenças sexualmente transmissíveis, v. 21, n. 4, p. 166–170, 2009. ALFREDO AMADOR-MOLINA, JOSÉ FERNANDO HERNÁNDEZ-VALENCIA, EDMUNDO LAMOYI, A. C.-P. AND M.L. Role of Innate Immunity against Human Papillomavirus (HPV) Infections and Effect of Adjuvants in Promoting Specific Immune Response. Viruses, v. 5, p. 2624–2642, 2013. ANIC, G. M. et al. Incidence and human papillomavirus (HPV) type distribution of genital warts in a multinational cohort of men: the HPV in men study. The Journal of infectious diseases, v. 204, n. 12, p. 1886–92, 15 dez. 2011. APGAR, B. S.; ZOSCHNICK, L.; WRIGHT, T. C. The 2001 Bethesda System Terminology. American Family Physician, v. 68, n. 10, p. 1992–1998, 2003. AYRES, A. R. G.; SILVA, G. A. E. Cervical HPV infection in Brazil: systematic review. Revista de saúde pública, v. 44, n. 5, p. 963–74, 2010. AZAR, K. K., M. TANI, H. YASUDA, A SAKAI, M. INOUE E T. SASAGAWA. Increased secretion patterns of interleukin-10 and tumor necrosis factor-alpha in cervical squamous intraepithelial lesions. Hum Pathol, v.35, n.11, Nov, p.1376-84. 2004. BAIS, A. G. et al. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. Journal of clinical pathology, v. 58, n. 10, p. 1096–100, 2005. BAJCETIĆ M, ZIGON N, SAMARDZIĆ R, B. D. Alpha interferons-new therapeutic modalities. Med Pregl., v. 131, n. 3–4, p. 135–139, 1998. BALDRIDGE, M. T.; KING, K. Y.; GOODELL, M. A. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol, v. 32, n. 2, p. 57–65, 2012. BEGLIN, M.; MELAR-NEW, M.; LAIMINS, L. Human papillomaviruses and the interferon response. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, v. 29, n. 9, p. 629–635, 2009. BELTRÁN-LISSABET, J. F. Aspectos generales sobre la estructura y función de las proteínas codificadas por el virus del Papiloma Humano. Revista CENIC Ciências Biológicas, v. 45, n. 2, p. 108–118, 2014. BERKHOF, J. et al. Cost-Effectiveness of Cervical Cancer Prevention in Central and Eastern Europe and Central Asia. Vaccine, v. 31, n. S7, p. H71–H79, 2013. BERNARD, H. U. The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. Journal of Clinical Virology, v. 32, n. SUPPL., p. 1–6, 2005. BERNARD, H. U. et al. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, v. 401, n. 1, p. 70–79, 2010. BEX A , MALLO H, KERST M, HAANEN J, HORENBLAS S, DE G. G. A phase-II study of pegylated interferon alfa 2b for patients with metastatic renal cell carcinoma and removal of the primary tumor. Cancer immunology, immunotherapy, v. 54, n. 7, p. 713–719, 2005. BIERIE, B.; MOSES, H. L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature reviews. Cancer, v. 6, n. 7, p. 506–20, 2006. BONNER, J. A. et al. Articles Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncology, v. 11, p. 21–28, 2010. BOSCH, F. X. et al. Prevalence of Human Papillomavirus in Cervical Cancer: a Worldwide Perspective. Journal of National Cancer Institute, v. 87, n. 11, p. 796–802, 1995. BOSCH, F. X.; QIAO, Y.; CASTELLSAGUÉ, X. The epidemiology of human papillomavirus infection and its association with cervical cancer. International Journal of Gynecology and Obstetrics, v. 94, n. 2, p. 8–21, 2006. BRISSON, J. et al. Risk factors for cervical intraepithelial neoplasia: differences between low- and high-grade lesions. American journal of epidemiology, v. 140, n. 8, p. 700–710, 1994. BURGER, P. M. et al. Increased IL-6 and IL-8 Levels in Cervicovaginal Secretions. Gynecologic Oncology 73, v. 73, p. 285–291, 1999. BURNET, S. M. CANCER-A BIOLOGICAL APPROACH III. Viruses associated with neoplastic conditions. British Medical Journal, v. 1, p. 841–847, 1957. CAESTECKER, M. DE. The transforming growth factor- ␤ superfamily of receptors. Cytokine & Growth Factor Reviews, v. 15, p. 1–11, 2004. CAMARA, G. N. N. DE L. et al. Os papilomavírus humanos – HPV: histórico, morfologia e ciclo biológico. Universitas: Ciências da Saúde, v. 1, n. 1, p. 149–158, 2008. CHAMMAS, R. Câncer e o microambiente tumoral Cancer and the tumor microenvironment. Revista Médica, v. 89, n. 1, p. 21–31, 2010. CÂNCER, I. C. OF H. AND. Human Papillomavirus and Related Diseases Report - Brazil. ICO Institut Catalâ dOncologia, v. 27, p. 6–20, 2016. CASTELLSAGUE, X.; MUNOZ, N. Chapter 3 : Cofactors in Human Papillomavirus Carcinogenesis — Role of Parity , Oral Contraceptives , and Tobacco Smoking. Journal of the National Cancer Institute Monographs, n. 31, 2003. CASTELLSAGUÉ, X. et al. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: Implications for screening and prevention. Journal of the National Cancer Institute, v. 98, n. 5, p. 303–315, 2006. CHAMMAS, R. Câncer e o microambiente tumoral Cancer and the tumor microenvironment. Revista Médica, v. 89, n. 1, p. 21–31, 2010. CHEN, F. et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Medicine, v. 13, p. 45, jan. 2015. CHOW, L. T.; BROKER, T. R.; STEINBERG, B. M. The natural history of human papillomavirus infections of the mucosal epithelia. Journal Compilation APMIS, v. 118, n. 6–7, p. 422–49, jun. 2010. CLERICI, M., M. MEROLA, E. FERRARIO, D. TRABATTONI, M. L. VILLA, B. STEFANON, D. J. VENZON, G. M. SHEARER, G. DE PALO E E. CLERICi. Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst, v.89, n.3, Feb 5, p.245-50. 1997. CLERICI M, MEROLA M, FERRARIO E, TRABATTONI D, VILLA ML, STEFANON B, et al. Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst 1997;89:245-50. CRUVINEL, W. D. M. et al. Sistema Imunitário – Parte I Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol, v. 55, n. 11, 2010. CRUZ, F. J.; MELO, V. H. HPV na cérvice uterina. Revista Femina, v. 1, n. 31, p. 423–27, 2010. DALING, J. R. et al. The relationship of human papillomavirus-related cervical tumors to cigarette smoking, oral contraceptive use, and prior herpes simplex virus type 2 infection. Cancer Epidemiology Biomarkers & Prevention, v. 5, n. 7, p. 541–548, 1996. DAS, B. C. et al. Cancer of the uterine cervix and human papillomavirus infection. Current Science, v. 78, n. 1, p. 52–63, 2000. DE LIMA, M. A. P.; DA SILVA, C. G. L.; RABENHORST, S. H. B. Papel das Proteínas Precoces do Papilomavírus Humano na Carcinogênese Role of the Human Papillomavirus Early Proteins in the Carcinogenesis. v. 59, n. 4, p. 565–573, 2013. DE OLIVEIRA, C. M. B. et al. Citocinas e Dor. Revista Brasileira de Anestesiologia, v. 61, n. 2, p. 255–265, 2011. DE VUYST, H. et al. The burden of human papillomavirus infections and related diseases in sub-saharan Africa. Vaccine, v. 31, n. S5, 2013. DELGADO, F. G., E. MARTINEZ, M. A. CESPEDES, M. M. BRAVO, M. C. NAVAS E A. L. COMBITA ROJAS. Increase of human papillomavirus-16 E7-specific T helper type 1 response in peripheral blood of cervical cancer patients after radiotherapy. Immunology, Sep 5. 2008. DINARELLO, C. A. Historical insights into cytokines .European Journal of Immunology, v 37,suppl 1,p 34-45, 2007. DENNIS, K. L. et al. Current status of IL-10 and regulatory T-cells in cancer Kristen. Curr Opin Oncol, v. 25, n. 6, p. 637–645, 2015. DIPIRO, J. T. Cytokine networks with infection: mycobacterial infections, leishmaniasis, human immunodeficiency virus infection, and sepsis. Pharmacotherapy, v. 17, n. 2, p. 205–223, 1997. DONNELLY, R. P.; KOTENKO, S. V. Interferon-Lambda : A New Addition to an Old Family. Journal of Interferon & Cytokine Research, v. 30, n. 8, p. 555–564, 2010. DONNELLY, R. P. et al. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. Journal of leukocyte biology, v. 76, n. 2, p. 314–321, 2004. DUSSURGET, O.; BIERNE, H.; COSSART, AND P. The bacterial pathogen Listeria monocytogenes and the interferon family : type I , type II and type III interferons. Frontiers in Cellular and Infection Microbiology, v. 4, n. April, p. 1–12, 2014. FEDRIZZI, E. N. Epidemiologia da infecção genital pelo HPV. Rev Bras Pat Trato Gen, v. 1, n. 1, p. 3–8, 2011. FERLAY, J. et al. Cancer incidence and mortality worldwide : Sources , methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, v. 386, n. 136, p. 359–386, 2015. FERNANDES, A. P., M. A. GONCALVES, G. DUARTE, F. Q. CUNHA, R. T. SIMOES E E. A. DONADI. HPV16, HPV18, and HIV infection may influence cervical cytokine intralesional levels. Virology, v.334, n.2, Apr 10, p.294-8. 2005. FERRAZ, L. D. C. et al. Ciclo celular , HPV e evolução da neoplasia intraepitelial cervical : seleção de marcadores biológicos. Journal of the Health Sciences Institute, v. 30, n. 2, p. 107–111, 2012. FINTER NB, CHAPMAN S, DOWD P, JOHNSTON JM, MANNA V, SARANTIS N, SHERON N, SCOTT G, PHUA S, T. P. The use of interferon-alpha in virus infections. Drugs, v. 42, n. 5, p. 749–765, 1991. FITZMAURICE, C. et al. The Global Burden of Cancer 2013. JAMA oncology, v. 1, n. 4, p. 505–27, 2015. FORMAN, D. et al. Global burden of human papillomavirus and related diseases. Vaccine, v. 30 Suppl 5, p. F12-23, 2012. FRANCO, E. L.; COUTLÉE, F.; FERENCZY, A. Integrating human papillomavirus vaccination in cervical cancer control programmes. Public Health Genomics, v. 12, n. 5–6, p. 352–361, 2009. FRANCO, E. L.; DUARTE-FRANCO, E.; FERENCZY, A. Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. Canadian Medical Association, v. 164, n. 7, p. 1017–1025, 2001. FRANCO, E. L.; ROHAN, T. E.; VILLA, L. L. Epidemiologic Evidence and Human Papillomavirus Infection as a Necessary Cause of Cervical Cancer. Journal of the National Cancer Institute, v. 91, n. 6, p. 506–511, 1999. GAIOTTI, D. et al. Tumor Necrosis Factor- a Promotes Human Papillomavirus ( HPV ) E6 / E7 RNA Expression and Cyclin-Dependent Kinase Activity in HPV-Immortalized Keratinocytes by a ras-Dependent Pathway y. MOLECULAR CARCINOGENESIS, v. 27, p. 97–109, 2000. GEE K, GUZZO C, CHE MAT NF, MA W, K. A. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets., v. 8, n. 1, p. 40–52, 2009. GEORGE, S. et al. Phase I trial of PEG-interferon and recombinant IL-2 in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol, v. 62, n. 2, p. 347–354, 2008. GERMANO, A. et al. Intralesional therapy using recombinant interferon alpha 2 B in lesions of the uterine cervix caused by human papilloma virus. Minerva Ginecol, v. 41, n. 6, p. 277–281, 1989. GIANNINI SL, AL-SALEH W, PIRON H, JACOBS N, DOYEN J, BONIVER J, et al. Cytokine expression in squamous intraepithelial lesions of the uterine cervix: implications for the generation of local immunosuppression. Clin Exp Immunol 1998;113:183-9. GILBERT, K. M. et al. Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells. Immunological investigations, v. 26, n. 4, p. 459–72, 1997. GUERMONPREZ, P.; SAVEANU, L.; KLEIJMEER, M. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature, v.425, p.397-02, 2003. GHITTONI, R. et al. Role of human papillomaviruses in carcinogenesis. Ecancermedicalscience, p. 1–9, 2015. GRESSER I, FONTAINE D, COPPEY J, FALCOFF R, F. E. Interferon and murine leukemia. II. Factors related to the inhibitory effect of interferon preparations on development of Friend leukemia in mice. Proc Soc Exp Biol Med, v. 124, n. 1, p. 91–94, 1967. GUIMARÃES, M. V. M. B. et al. Resposta imune ao HPV e as neoplasias intra-epiteliais cervicais em mulheres infectadas e não infectadas pelo HIV: perfil de citocinas. Femina, v. 39, p. 275–280, 2011. GUERMONPREZ, P.; SAVEANU, L.; KLEIJMEER, M. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature, v.425, p.397-02, 2003. HANAHAN, D.; WEINBERG, R. A. Hallmarks of cancer: the next generation. Cell, v. 144, n. 5, p. 646–674, 2011. HILDESHEIM, A et al. HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. British journal of cancer, v. 84, n. 9, p. 1219–1226, 2001. HOLSCHNEIDER, C.H.; BALDWEN, R.L.; TUMBER, K.; AOYAMA, C.; KARLAN, B.Y. The fragile histidine triad gene: a molecular link between cigarette smoking and cervical cancer. Clinical Cancer Research, v. 11, n. 16, p. 5756-5763, 2005. HPV, I. C. O.; CENTRE, I. Human Papillomavirus and Related Diseases Report, BRAZIL. ICO Institut Catalâ dOncologia, p. 6–20, 2016. HUANG, J. et al. Preclinical validation : LV / IL-12 transduction of patient leukemia cells for immunotherapy of AML. Molecular Therapy — Methods & Clinical Development, v. 3, n. August, p. 1–11, 2016. HUCHKO, M. J. et al. Accuracy of visual inspection with acetic acid to detect cervical cancer precursors among HIV-infected women in Kenya. International journal of cancer. Journal international du cancer, v. 136, n. 2, p. 392–398, 2015. HUNTER, C. A.; JONES, S. A. IL-6 as a keystone cytokine in health and disease. Nature Immunology, v. 16, p. 448–457, 2015. IANCU, I. V. et al. TGF-beta signalling pathway factors in HPV-induced cervical lesions. Roum Arch Microbiol Immunol, v. 69, n. 3, p. 113–118, 2010. IGNEY, F. H.; KRAMMER, P. H. Immune escape of tumors: apoptosis resistance and tumor counterattack. Journal of leukocyte biology, v. 71, n. 6, p. 907–920, 2002. IKEDA, H.; OLD, L. J.; SCHREIBER, R. D. The roles of IFNgama in protection against tumor development and cancer immunoediting. Cytokine and Growth Factor Reviews, v. 13, n. 2, p. 95–109, 2002. INCA. Institituto Nacional de Câncer José Alencar Gomes da Silva. Disponível em: <http://www2.inca.gov.br/wps/wcm/connect/cancer/site/oquee>. Acesso em: 18 ago. 2016. IVASHKIV, L. B.; DONLIN, L. T. Regulation of type I interferon responses. Nat Rev Immunol, v. 14, n. 1, p. 36–49, 2015. IYER, S. et al. Targeting TGF beta signaling for cancer therapy. Cancer biology & therapy, v. 4, n. 3, p. 261–266, 2005. J, K. Cancer immunotherapy: the interferon-alpha experience. Semin Oncol., v. 29, n. 3, p. 18–26, 2002. JEMAL, A. et al. Cancer burden in Africa and opportunities for prevention. Cancer, v. 118, n. 18, p. 4372–4384, 2012. JOHNSON, T. L. et al. HPV detection by polymerase chain reaction (PCR) in verrucous lesions of the upper aerodigestive tract. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, v. 4, n. 4, p. 461–465, 1991. JUANG, V.; LEE, H.; LIN, A. M. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2 – 3 : an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells. International Journal of Nanomedicine, v. 11, p. 6047–6064, 2016. KATZE, M. G. et al. Viruses and Interferon : A Fight for Supremacy. Nature Reviews Immunolog, v. 2, n. September, p. 675–687, 2002. KIM, J. J. et al. Model-based impact and cost-effectiveness of cervical cancer prevention in sub-saharan Africa. Vaccine, v. 31, n. S5, p. F60–F72, 2013. KJAER, S. K. Risk factors for cervical neoplasia in Denmark. APMIS, Supplement, v. 80, n. 1, p. 1–41, 1998. KJELLBERG, L. et al. Smoking, diet, pregnancy and oral contraceptive use as risk factors for cervical intra-epithelial neoplasia in relation to human papillomavirus infection. British journal of cancer, v. 82, n. 7, p. 1332–1338, 2000. KOROMILAS, A E.; LI, S.; MATLASHEWSKI, G. Control of interferon signaling in human papillomavirus infection. Cytokine & growth factor reviews, v. 12, n. 2–3, p. 157–70, 2001. KOSIEWICZ, M. M. et al. Mechanisms of tolerance induced by transforming growth factor-beta -treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. International Immunology, v. 16, n. 5, p. 697–706, 2004. KULKARNI, S. S. et al. Prevalence and distribution of high risk human papillomavirus (HPV) types 16 and 18 in carcinoma of cervix, saliva of patients with oral squamous cell carcinoma and in the general population in Karnataka, India. Asian Pacific Journal of Cancer Prevention, v. 12, n. 3, p. 645–648, 2011. LABANI, S.; ASTHANA, S. Cervical cancer screening trials in India and ethical issues. Indian Journal of Community Health, v. 26, n. 3, p. 211–213, 2014. LASFAR, A. et al. Characterization of the Mouse IFN- L Ligand-Receptor System : IFN- L s Exhibit Antitumor Activity against B16 Melanoma. Cancer Res, v. 9, n. 8, p. 4468–4477, 2006. LETO, M. D. G. P. et al. Human papillomavirus infection: etiopathogenesis, molecular biology and clinical manifestations. Anais brasileiros de dermatologia, v. 86, n. 2, p. 306–317, 2011. LIMA, D. N. DE O. et al. Citopatologia Ginecologica. Brasilia - DF: sgtes@saude.gov.br, 2012. LIMA, M. A. P. DE; SILVA, C. G. L. DA; RABENHORS, S. HELENA B. Papel das Proteínas Precoces do Papilomavírus Humano na Carcinogênese Role of the Human Papillomavirus Early Proteins in the Carcinogenesis. Revista Brasileira de Cancerologia , v. 59, n. 4, p. 565–573, 2013. LM, I. The interferons. Cancer, v. 15, n. 70, p. 940–945, 1992. LIN-HUNG WEI, M.D., MIN-LIANG KUO, PH.D., CHI-AN CHEN, M.D., WEN-FANG CHENG, M.D., PH.D., SHAO-PEI CHENG, M.D., FON-JOU HSIEH, M.D., CHANG-YAO HSIEH, M.D., M. Interleukin-6 in Cervical Cancer: The Relationship with Vascular Endothelial Growth Factor. Gynecologic Oncology, v. 82, n. 149–56, 2001. LO YL, T. W. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells. Chem Biol Interact., v. 242, p. 13–23, 2015. LONGWORTH, M. S.; LAIMINS, L. A. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and molecular biology reviews : MMBR, v. 68, n. 2, p. 362–72, jun. 2004. LOPEZ, M. C. E M. A. STANLEY. Cytokine profile of draining lymph node lymphocytes in mice grafted with syngeneic keratinocytes expressing human papillomavirus type 16 E7 protein. J Gen Virol, v.81, n.Pt 5, May, p.1175-82. 2000. LORENZI, A. T.; SYRJÄNEN, K. J.; LONGATTO-FILHO, A. Human papillomavirus (HPV) screening and cervical cancer burden. A Brazilian perspective. Virology journal, v. 12, p. 112, 2015. LOUIE, K. S. et al. Epidemiology and prevention of human papillomavirus and cervical cancer in sub-Saharan Africa: A comprehensive review. Tropical Medicine and International Health, v. 14, n. 10, p. 1287–1302, 2009. MACHADO, F. A. Avaliação do infiltrado de células do sistema imunológico no estroma do colo uterino de pacientes com neoplasia intra-epitelial cervical grau II – III após tratamento com interferon alfa-2b intralesional. [s.l.] UNIVERSIDADE FEDERAL DO TRIÂNGULO MINEIRO, 2011. MARCOLINO, L. D. Perfil de citocinas no soro e na secreção cervical de mulheres com lesão intraepitelial de baixo grau , lesão intraepitelial de alto grau e carcinoma epidermóide invasor . [s.l.] Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP Faculdade de Medicina de Botucatu, 2011. MARDEGAN M.C., RAMOS M.C., ADAD S.J., MICHELIN M.A., SHIMBA D., MURTA E.F. Immunological evaluation of vaginal secretion in patients with high-grade cervical intraepithelial neoplasia treated with intralesional interferon alpha-2b. Eur J Gynaecol Oncol. v. 32(3), p. 297-302, 2011 MASSIMO TOMMASINO. The human papillomavirus family and its role in carcinogenesis. Cancer Biology, v. 26, p. 13–21, 2014. MEIJER, C. J. L. M. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nature Publishing Group, v. 14, n. 6, p. 395–405, 2014. MESQUITA JÚNIOR, D. et al. Sistema imunitário - parte II: fundamentos da resposta imunológica mediada por linfócitos T e B. Revista Brasileira de Reumatologia, v. 50, n. 11, p. 552–580, 2010. MINDIOLA R, CAULEJAS D, NÚÑEZ-TROCONIS J, ARAUJO M, DELGADO M, M. J. Increased number of IL-2, IL-2 receptor and IL-10 positive cells in premalignant lesions of the cervix. Invest Clin., v. 49, n. 4, p. 533–545, 2008. MCBRIDE, A. A.; JANG, M. K. Current understanding of the role of the Brd4 protein in the papillomavirus lifecycle. Viruses, v. 5, n. 6, p. 1374–94, jun. 2013. MCKINNEY, C. C.; HUSSMANN, K. L.; MCBRIDE, A. A. The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle. Viruses, v. 7, n. 5, p. 2450–2469, 2015. MENDES, C.; JOSÉ, D. O.; LEVI, E. The Biological Impact of Genomic Diversity in Cervical Cancer Development. Acta Cytologica, p. 1–5, 2016. MICHAEL PICKUP, SERGEY NOVITSKIY, AND H. L. M. The roles of TGFβ in the tumour microenvironment Michael. Nat Rev Cancer, v. 11, n. 13, p. 788–799, 2013. MICHELIN, M. et al. Helper T Lymphocyte Response in the Peripheral Blood of Patients with Intraepithelial Neoplasia Submitted to Immunotherapy with Pegylated Interferon-α. International Journal of Molecular Sciences, v. 16, n. 3, p. 5497–5509, 2015. MISSON, D. R. et al. Cytokine serum levels in patients with cervical intraepithelial neoplasia grade II-III treated with intralesional interferon-(alpha) 2b. Tumori, v. 97, n. 5, p. 578–584, 2011. MOSCICKI, A.-B. et al. Chapter 5: Updating the natural history of HPV and anogenital cancer. Vaccine, v. 24 Suppl 3, p. S3/42-51, 31 ago. 2006. MOTA, F. et al. The antigen-presenting environment in normal and human papillomavirus (HPV) -related premalignant cervical epithelium. Clin Exp Immunol, v. 116, p. 33–40, 1999. MUNOZ, N. et al. Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer — NEJM. The New England Journal of Medicine, v. 348, p. 518–527, 2003. MUNOZ, N. et al. Persistence of HPV infection and risk of high-grade cervical intraepithelial neoplasia in a cohort of Colombian women. British Journal of Cancer, v. 100, n. 7, p. 1184–1190, 2009. MURTA, E.F.C.; TAVARES MURTA, B. Successful pregnancy after vaginal cancer treated with interferon. Tumori, v. 90, n. 2, p. 247–248, 2004. MURTA, E. et al. Human Papillomavirus Infection in Adolescents: Relation to Contraceptive Method, Pregnancy, Smoking, and Cytologic Findings. Rev. Bras. Ginecol. Obstet, v. 23, n. 4, p. 217–221, 2001. NARISAWA-SAITO, M.; KIYONO, T. Basic mechanisms of high-risk human papillomavirus- induced carcinogenesis : Roles of E6 and E7 proteins. Cancer Sci, v. 98, n. 10, p. 1505–1511, 2007. NO, J. H. et al. Human Papillomavirus Vaccine : Widening the Scope for Cancer Prevention. Molecular Carcinogenesis, v. 50, p. 244–253, 2011. NEUZILLET, C. et al. Targeting the TGF-beta pathway for cancer therapy. Pharmacology and Therapeutics, v. 147, p. 22–31, 2015. NEY, R.; COBUCCI, O.; SOUZA, P. C. DE. REVISÃO O papel da inflamação na carcinogênese induzida pelo HPV. FEMINA, v. 42, n. 2, p. 62–64, 2014. NOGUERES, I. B. Associação entre a infecção pelo papilomavírus humano (HPV) e outras infecções genitais femininas. HU Revista, p. 19–28, 2010. OLIVEIRA, G. R. DE et al. Fatores de risco e prevalência da infecção pelo HPV em pacientes de Unidades Básicas de Saúde e de um Hospital Universitário do Sul do Brasil. Revista Brasileira de Ginecologia e Obstetrícia, v. 35, n. 5, p. 226–32, 2013. PALEFSKY, J. Screening for Anal and Cervical Dysplasia in HIV-Infected Patients. The PRN Notebook, v. 6, n. 3, p. 24–31, 2001. PASSOS, M. R. L. et al. Papilomavirose humana em genital , Parte I. J bras Doenças Sex Transm, v. 20, n. 2, p. 108–124, 2008 PENNA, C. et al. Intralesional beta-interferon treatment of cervical intraepithelial neoplasia associated with human papillomavirus infection. Tumori, v. 80, n. 2, p. 146–150, 1994. PETERS, J.H.; GIESELER, R.; THIELE, B.; STEINBACH, F. Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol. Today. v.17, n. 6, p. 273- 278, Jun.1996. PILLAI R M, PHD, JANAKI M. BABU, MSC, VINODA T. JISSA, MS. et al. Region-wise distribution of high-risk human papillomavirus types in squamous cell carcinomas of the cervix in India. International Journal of Gynecological Cancer, v. 20, n. 6, p. 1046–1051, 2010. PINTO, V. F. C.; BARBOSA, V. F. C.; PAIVA, S. G. Aspectos epidemiológicos e citológicos de infecções pelo papilomavírus humano (HPV) em adolescentes. Revista Científica do ITPAC, v. 5, p. 1–10, 2012. POTOČNIK, M. et al. Distribution of human papillomavirus (HPV) genotypes in genital warts from males in Slovenia. Acta Dermatovenerologica Alpina, Pannonica et Adriatica, v. 16, n. 3, p. 91–98, 2007. PRETET, J. L.; CHARLOT, J. F.; MOUGIN, C. Virological and carcinogenic aspects of HPV. Bull Acad Natl Med, v. 191, n. 3, p. 611–623, 2007. PUDNEY, J.; QUAYLE, A. J.; ANDERSON, D. J. Immunological Microenvironments in the Human Vagina and Cervix : Mediators of Cellular Immunity Are Concentrated in the Cervical Transformation Zone 1. Biology of Reproduction, v. 1263, n. August, p. 1253–1263, 2005. QIAN XU, SHIXUAN WANG, LING XI, SUFANG WU, GANG CHEN, YUN ZHAO, YING WU, D. M. Effects of Human Papillomavirus Type 16 E7 Protein on the Growth of Cervical Carcinoma Cells and Immuno-Escape Through the TGF-beta1 Signaling Pathway. Gynaecol Oncol, v. 101, n. 1, p. 132–139, 2006. RAMA, C. H. et al. Prevalence of genital HPV infection among women screened for cervical cancer. Revista de saúde pública, v. 42, n. 1, p. 123–130, 2008. RAMOS, M. C. et al. Expression of cytokines in cervical stroma in patients with high-grade cervical intraepithelial neoplasia after treatment with intralesional interferon-2b. European Journal of Gynaecological Oncology, v. 31, n. 5, p. 522–529, 2010. RAPAPORT, D. HPV Livro: 2. Biologia do HPV. Disponível em: <http://hpvinfo.com.br/hpv-livro-2-biologia-do-hpv/>. Acesso em: 1 set. 2016. RAUTAVA, J.; SYRJÄNEN, S. Human papillomavirus infections in the oral mucosa . J Am Dent Assoc, v. 142, n. 8, p. 905–914, 2011. RICHART, R. M. A modified terminology for cervical intraepithelial neoplasia. Obstetrics and gynecology, v. 75, n. 1, p. 131–3, 1990. RICHART R M. NATURAL HISTORY OF CERVICAL INTRAEPITHELIAL NEOPLASIA. Clin Obstet Gynecol, v. 10, n. 4, p. 748–784, 1967. ROKITA, W. Colposcopy of abnormal transformation zone. Wiadomości lekarskie (Warsaw, Poland : 1960), v. 59, n. 7–8, p. 486–489, 2006. RONCO, L. V. et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes and Development, v. 12, n. 13, p. 2061–2072, 1998. ROSA, M. I. DA et al. Papilomavírus humano e neoplasia cervical. Caderno de Saúde Pública, v. 25, n. 5, p. 953–964, 2009. ROTELI-MARTINS, C. M. et al. Cigarette smoking and high-risk HPV DNA as predisposing factors for high-grade cervical intraepithelial neoplasia (CIN) in young Brazilian women. Acta Obstet Gynecol Scand, v. 77, n. 6, p. 678–682, 1998. SAAVEDRA, K.; BREBI, P.; ROA, J. C. Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix, Clinical Epigenetics, p. 1–7, 2012. SANKARANARAYANAN, R. et al. Infrastructure requirements for human papillomavirus vaccination and cervical cancer screening in sub-saharan africa. Vaccine, v. 31, n. S5, p. F47–F52, 2013. SCHIFFMAN, M. H.; CASTLE, P. Epidemiologic studies of a necessary causal risk factor: human papillomavirus infection and cervical neoplasia. Journal of the National Cancer Institute, v. 95-96, n. 6, p. E2, 2003. SEOUD, M. et al. Extended Middle East and North Africa: Summary recommendations for the prevention of human papillomavirus infections and related cancers including cervical cancer. Vaccine, v. 31, n. S6, p. G78–G79, 2013. SONG SH, LEE JK, LEE NW, SAW HS, KANG JS, LEE KW. Interferon-gamma (IFN-gamma): a possible prognostic marker for clearance of high-risk human papillomavirus (HPV). Gynecol Oncol 2008; 108:543-8. SCOTT, M.; STITES, D. P.; MOSCICKI, A. B. Th1 cytokine patterns in cervical human papillomavirus infection. Clin. Diagn. Lab. Immunol., Washington, v. 6, n. 5, p. 751-755, Sept. 1999. SCOTT, M. E., Y. MA, S. FARHAT, S. SHIBOSKI E A. B. MOSCICKI. Covariates of cervical cytokine mRNA expression by real-time PCR in adolescents and young women: effects of Chlamydia trachomatis infection, hormonal contraception, and smoking. J Clin Immunol, v.26, n.3, May, p.222-32. 2006. SCOTT, M.E.; MA, Y.; KUZMICH, L.; MOSCICKI, A.B. Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int. J. Cancer., v.124, n.6, p.1379-1383, Mar.2009. SHARMA A , RAJAPPA M, SAXENA A, S. M. Cytokine profile in Indian women with cervical intraepithelial neoplasia and cancer cervix. Int J Gynecol Cancer., v. 17, n. 4, p. 879–885, 2007. SMITH, J. S. et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. Journal of the National Cancer Institute, v. 94, n. 21, p. 1604–1613, 2002. SMITH, J. H. F. Bethesda 2001. Cytopathology, v. 13, n. 1, p. 4–10, 2002. SMITH, J. S.; PH, D. Prevalência idade específico de infecção por papilomavírus humano em mulheres : uma revisão global Abstrato propósito Visite ScienceDirect para ver se você tem acesso. Journal of Adolescent Health, v. 43, n. 4, p. 51–62, 2008. SOLOMON, D. et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. Jama, v. 287, n. 16, p. 2114–9, 2002. SONG, S. H., J. K. LEE, N. W. LEE, H. S. SAW, J. S. KANG E K. W. LEE. Interferon-gamma (IFN-gamma): a possible prognostic marker for clearance of high-risk human papillomavirus (HPV). Gynecol Oncol, v.108, n.3, Mar, p.543-8. 2008. STAFL A, W. G. An international terminology of colposcopy : report of the Nomenclature Committee of the International Federation of Cervical Pathology and Colposcopy PubMed Commons. Obstet Gynecol, v. 77, n. 2, p. 313–314, 1991. STANLEY, M. Immune responses to human papillomavirus. Vaccine, v.24 Suppl 1, Mar 30, p.S16-22. 2006. STANLEY MA, PETT MR, C. N. HPV : from infection to cancer. Biochem Soc Trans., v. 35, n. 6, p. 1456–1460, 2007. STELLATO, G. Intralesional recombinant alpha 2B interferon in the treatment of human papillomavirus-associated cervical intraepithelial neoplasia. Sexually transmitted diseases, v. 19, n. 3, p. 124–126, 1992. SYRJÄNEN, S.; SYRJÄNEN, K. Invited speakers The History of Papillomavirus Research. Cent Eur J Public Health, v. 16, n. 20, p. 7–41, 2008. SYRJÄNEN, S. et al. Immunosuppressive cytokine Interleukin-10 ( IL-10 ) is up-regulated in high-grade CIN but not associated with high-risk human papillomavirus ( HPV ) at baseline , outcomes of HR-HPV infections or incident CIN in the LAMS cohort. Virchows Arch, v. 10, n. 455, p. 505–515, 2009. TIEMESSEN, M. M. et al. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response. International immunology, v. 15, n. 12, p. 1495–1504, 2003. THOMAS, L. On immunosurveillance in human cancer. Yale Journal of Biology and Medicine, v. 55, n. 3–4, p. 329–333, 1982. TJIONG MY, VAN DER VANGE N, TER SCHEGGET JS, BURGER MP, TEN KATE FW, OUT TA. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine 2001;14:357-60. TSUKUI T, HILDESHEIM A, SCHIFFMAN MH, LUCCI J, CONTOIS D, LAWLER P, ET AL. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res 1996; 56:3967-74. UCHIMURA, N. S. et al. Influência do uso de anticoncepcionais hormonais orais sobre o número de células de Langerhans em mulheres com captura híbrida negativa para papilomavírus humano. Revista Brasileira de Ginecologia e Obstetrícia, v. 27, n. 12, p. 726–730, 2005. VACCARELLA, S.; BRUNI, L.; SEOUD, M. Burden of human papillomavirus infections and related diseases in the extended middle east and North Africa Region. Vaccine, v. 31, n. S6, p. G32–G44, 2013. VARELLA, P. P. V; FORTE, W. C. N. Citocinas: revisão. Revista Brasileira de Alergia e Imunopatologia, p. 1–8, 2014. VERHEIJEN, R. H. M. et al. Original Paper Di V erences in Cytokine mRNA Profiles Between Premalignant and Malignant Lesions of the Uterine Cervix. European J Cancer, v. 35, n. 3, p. 490–497, 1999. VILLA, L. L. et al. Differential Effect of Tumor Necrosis Factor on Proliferation of Primary Human Keratinocytes and Cell Lines Containing Human Papillomavirus Types 16 and 18. MOLECULAR CARCINOGENESIS, v. 6, p. 5–9, 1992. VILLIERS, E. DE et al. Classification of papillomaviruses. Virology, v. 324, p. 17–27, 2004. WAHL, S. M. et al. TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. Journal of leukocyte biology, v. 76, n. 1, p. 15–24, 2004. WALBOOMERS, J. M. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology, v. 189, n. 1, p. 12–19, 1999. WEI, L. et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene, v. 22, n. 7, p. 1517–1527, 2003. WEI, L. Z. et al. Localized interleukin-12 delivery for immunotherapy of solid tumours. J. Cell. Mol. Med., v. 17, n. 11, p. 1465–1474, 2013. WESA, A.; KALINSKI, P.; TATSUMI, T.; et al Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient Thl-type anti-melanoma CD4+ T cell responses in vitro. Jorn. Immunother. n°30, p.75 - 82, 2007. WOODWORTH, C.D.; SIMPSON, S. Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirus-immortalized, and carcinoma cell lines. Am. J. Pathol., v. 142, n.5, p. 1544-1555, May 1993. WRIGHT, T. C. et al. Cervical intraepithelial neoplasia in women infected with human immunodeficiency virus: prevalence, risk factors, and validity of Papanicolaou smears. New York Cervical Disease Study. Obstetrics and gynecology, v. 84, n. 4, p. 591–597, 1994. WU, M.-T. et al. Lifetime exposure to environmental tobacco smoke and cervical intraepithelial neoplasms among nonsmoking Taiwanese women. Archives of environmental health, v. 58, n. 6, p. 353–359, 2003. YANG, L. TGF beta and cancer metastasis: An inflammation link. Cancer and Metastasis Reviews, v. 29, n. 2, p. 263–271, 2010. YIM, E.-K.; PARK, J.-S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer research and treatment : official journal of Korean Cancer Association, v. 37, n. 6, p. 319–24, 2005. ZENG, X. et al. Passive Smoking and Cervical Cancer Risk: A Meta-analysis Based on 3 , 230 Cases and 2 , 982 Controls. Asian Pacific Journal of Cancer Prevention, v. 13, n. 6, p. 2687–2693, 2012. ZUR HAUSEN, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. Journal of the National Cancer Institute, v. 92, n. 9, p. 690–8, 2000. ZHU, J.; PAUL, W. E. CD4 T cells : fates , functions , and faults. Blood, v. 112, n. 5, p. 1557–1570, 2008.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectCitocinas.por
dc.subjectInterferon α 2b peguilado.por
dc.subjectImunoterapia.por
dc.subjectNeoplasia intraepitelial cervical.por
dc.subjectCytokines.eng
dc.subjectInterferon α 2b pegylated.eng
dc.subjectImmunotherapy.eng
dc.subjectCervical intraepithelial neoplasia.eng
dc.subject.cnpqImunologia Aplicadapor
dc.titleAvaliação do perfil de citocinas na secreção endocervical de pacientes com nic II e III tratadas com interferon alfa peguiladopor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação em Ciências da Saúde

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Fabiano V Mundim.pdfDissert Fabiano V Mundim4,29 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons