Biblioteca Digital de Teses e Dissertações PÓS-GRADUAÇÃO SCTRICTO SENSU Programa de Pós-Graduação em Ciências da Saúde
Use este identificador para citar ou linkar para este item: http://bdtd.uftm.edu.br/handle/tede/860
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDESIDÉRIO , Chamberttan Souza-
dc.creator.ID03141219192por
dc.creator.Latteshttp://lattes.cnpq.br/1083223396786581por
dc.contributor.advisor1MURTA, Eddie Fernando Candido-
dc.contributor.advisor1ID47668032649por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5724192420139830por
dc.contributor.advisor-co1MICHELIN, Márcia Antoniazi Michelin-
dc.contributor.advisor-co1ID11828808805por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2599409028588669por
dc.date.accessioned2019-09-09T21:26:43Z-
dc.date.issued2017-08-30-
dc.identifier.citationDESIDÉRIO , Chamberttan Souza. Avaliação do infiltrado tumoral em camundongos induzidos a tumor de mama submetidos à imunoterapia com células dendríticas e atividade física. 2017. 50f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .por
dc.identifier.urihttp://bdtd.uftm.edu.br/handle/tede/860-
dc.description.resumoO infiltrado inflamatório tem uma importante participação na reposta imune contra diversas doenças, entre elas o câncer. Diante disso, o trabalho tem como objetivo, avaliar o infiltrado inflamatório de camundongos induzidos ao tumor de mama, tratados com a vacina de Células Dendríticas, atividade física e terapia combinada (atividade física + vacina de células dendríticas). Para realização do estudo, foram utilizados 70 camundongos BALB/c, sendo 60 fêmeas e 10 de ambos os gêneros para extração de medula e confecção da vacina de Células Dendríticas, as fêmeas foram divididas em 4 grupos com n=15: grupo tumor sem tratamento(T), grupo tumor submetido a prática de atividade física(TAF), grupo tumor tratado com vacina de células dendríticas(TDC) e grupo tumor atividade física mais vacinação com células dendríticas(TTC) .O tumor dos animais foi extraído pós eutanásia para avaliação por imunofluorescência dos seguintes marcadores: linfócitos T auxiliares e citotóxicos(CD4 e CD8), MHC II( IA), moléculas co-estimulatórias (CD80, CD86 e CD152) e moléculas de adesão (CD54 e CD102). Como resultados verificamos um volume tumoral final menor estatisticamente significante dos grupos tratados quando comparados aos animais do grupo tumor sem tratamento, tendo apresentado valor de p<0.0030 para o grupo TAF, p<0,0023 para TDC e p<0,0182 para TC. Na avaliação dos marcadores de superfície verificou-se diferenças significativas na expressão de MHC II no grupo tumor DC comparado ao grupo T com p<0,0255. Verificamos alterações na expressão de CTLA-4, verificando uma diminuição estatisticamente significativa quando comparamos o grupo TDC com os grupos TAF e TTC, apresentando p<0,0178. Em relação as moléculas de adesão ICAM-1 e ICAM-2, observamos um aumento significativo para ICAM-1 em todos os grupos submetidos a algum tipo de imunoterapia verificando-se p<0,0001. A molécula de adesão ICAM-2 demonstrou um aumento significativo na sua expressão nos grupos que sofreram intervenção imunoterápica. Concluímos que os diferentes tipos de imunoterapia foram capazes de modular a resposta imune antitumoral, causando assim modificações no infiltrado que levaram a uma menor progressão tumoral.por
dc.description.abstractThe inflammatory infiltrate has an important participation in the immune response against several diseases, among them cancer. Therefore, the objective of this study was to evaluate the inflammatory infiltrate of mice induced to the breast tumor, treated with the Dendritic Cell vaccine, physical activity and combined therapy (physical activity + dendritic cell vaccine). For the study, 70 BALB / c mice were used, 60 females and 10 of both genera for spinal cord extraction and Dendritic cell vaccine preparation, females were divided into 4 groups with n = 15: untreated tumor group (TTC), tumor group undergoing physical activity (TAF), tumor group treated with dendritic cell vaccine (TDC) and tumor group physical activity plus dendritic cell vaccination (TTC). Tumor of the animals was extracted post euthanasia for (CD4 and CD8), MHC II (IA), costimulatory molecules (CD80, CD86 and CD152) and adhesion molecules (CD54 and CD102) were evaluated by immunofluorescence evaluation of the following markers: helper and cytotoxic T lymphocytes. As results we found a final lower tumor volume statistically significant of the treated groups when compared to the animals of the untreated tumor group, presenting p <0.0030 for the TAF group, p <0.0023 for TDC and p <0.0182 for CT. In the evaluation of the surface markers there were significant differences in MHC II expression in the DC tumor group compared to the T group with p <0.0255. We verified changes in CTLA-4 expression, showing a statistically significant decrease when comparing the BDC group with the TAF and TTC groups, presenting p <0.0178. In relation to the ICAM-1 and ICAM-2 adhesion molecules, we observed a significant increase for ICAM-1 in all groups submitted to some type of immunotherapy, with p <0.0001. The ICAM-2 adhesion molecule demonstrated a significant increase in its expression in the groups that underwent immunotherapeutic intervention. We conclude that the different types of immunotherapy were able to modulate the antitumor immune response causing modifications in the infiltrate that led to a lesser tumor progression.eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttp://bdtd.uftm.edu.br/retrieve/5704/Dissert%20Chamberttan%20S%20Desid%c3%a9rio.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal do Triângulo Mineiropor
dc.publisher.departmentInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFTMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências da Saúdepor
dc.relation.referencesABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. H. I. V. Imunologia celular e molecular. 7. ed. Rio de Janeiro: Elsevier, 2012. ABDALLA, D. R. et al. Innate immune response adaptation in mice subjected to administration of DMBA and physical activity. Oncology Letters, v. 7, n. 3, p. 886–890, 2014. ABDALLA, D. R.; MURTA, E. F. C.; MICHELIN, M. A. The influence of physical activity on the profile of immune response cells and cytokine synthesis in mice with experimental breast tumors induced by 7,12-dimethylbenzanthracene. European Journal of Cancer Prevention, v. 22, n. 3, p. 251–258, 2013. AKBAR, A. N. et al. The peripheral generation of CD4+ CD25+ regulatory T cells. v. 109, n. 3, p. 319–325, 2003. ALEIXO, A. A. R.; MICHELIN, M. A.; MURTA, E. F. C. Immunotherapy with dendritic cells as a cancer treatment: perspectives and therapeutic potential. Recent patents on endocrine, metabolic & immune drug discovery, v. 7, n. 3, p. 226–32, set. 2013. ARAÚJO DA SILVA I, P.; DA, S.; RIUL, S. Câncer de mama: fatores de risco e detecção preoce. Revista Brasileira de Enfermagem, v. 64, n. 6, p. 1016–21, 2011. ARDAVÍN, C. Origin, precursors and differentiation of mouse dendritic cells. Nature Reviews Immunology, v. 3, n. 7, p. 582–591, 2003. ATANACKOVIC, D. et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. Journal of immunology (Baltimore, Md. : 1950), v. 172, n. 5, p. 3289–3296, 2004. BACURAU, R. F. et al. Effect of a moderate intensity exercise training protocol on the metabolism of macrophages and lymphocytes of tumour-bearing rats. Cell biochemistry and function, v. 18, n. 4, p. 249–58, dez. 2000. BANCHEREAU, J.; PALUCKA, A. K. Dendritic cells as therapeutic vaccines against cancer. Nature Reviews Immunology, v. 5, n. 4, p. 296–306, 2005. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. Nature, v. 392, n. March, p. 245–252, 1998. BARBUTO, J. A. M. et al. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer. Cancer Immunology, Immunotherapy, v. 53, n. 12, p. 1111–1118, 2004. BELKAID, Y.; OLDENHOVE, G. Tuning Microenvironments: Induction of Regulatory T Cells by Dendritic Cells. Immunity, v. 29, n. 3, p. 362–371, 2008. BELLA, S. DELLA et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British Journal of Cancer, v. 89, n. 8, p. 1463–1472, 2003. CHAIMOWICZ, F.; CAMARGOS, M. C. S. Envelhecimento e saúde no Brasil. Freitas EV, Py L, Cançado FAX, Doll J, Gorzoni ML. Tratado de Geriatria e Gerontologia, v. 3, p. 74-96, 2011. CHAMMAS, R. Câncer e o microambiente tumoral Cancer and the tumor microenvironment. Revista Médica, v. 89, n. 1, p. 21–31, 2010. COFFMAN, T. R. M. OSMANN AND R. L. THI AND TH2 CELLS : Different Patterns of Lymphokine Functional Properties. Ann. Rev. Immunol, v. 7, p. 145–173, 1989. COICO, R; SUNSHINE, G. Imunologia. 6 ed. Rio de Janeiro: Guanabara Koogan, 2010. CONNOLLY, N. C. et al. Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals. Clinical and Vaccine Immunology, v. 15, n. 2, p. 284–292, 2008. CONTARDI, E. et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. International Journal of Cancer, v. 117, n. 4, p. 538–550, 2005. DAMOISEAUX, J. Regulatory T cells: back to the future. The Netherlands journal of medicine, v. 64, n. 1, p. 4–9, 2006. DENARDO, D. G.; ANDREU, P.; COUSSENS, L. M. Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer and Metastasis Reviews, v. 29, n. 2, p. 309–316, 2010. DEXTER, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Research, v. 38, n. 10, p. 3174–3181, 1978. DI, D. et al. Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines. Oncology Reports, v. 35, n. 3, p. 1541–1548, 2016. FARAJI, F. et al. Cadm1 Is a Metastasis Susceptibility Gene That Suppresses Metastasis by Modifying Tumor Interaction with the Cell-Mediated Immunity. PLoS Genetics, v. 8, n. 9, 2012. FIELDS, R. C.; SHIMIZU, K.; MULÉ, J. J. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, v. 95, n. 16, p. 9482–7, 1998. FRIEDENREICH, C. M.; NEILSON, H. K.; LYNCH, B. M. State of the epidemiological evidence on physical activity and cancer prevention. European Journal of Cancer, v. 46, n. 14, p. 2593–2604, 2010. FUDENBERG, H. H. et al. Imunologia básica e clínica. Imunologia básica e clínica, 1980. GASSMAN, P.; ENNS, A.; HAIER, J. Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie, v. 27, n. 6, p. 577–582, 2004. GIUNTOLI, R. L. et al. Ovarian cancer-associated ascites demonstrates altered immune environment: Implications for antitumor immunity. Anticancer Research, v. 29, n. 8, p. 2875–2884, 2009. GLEESON, M.; PYNE, D. B. Special Feature: Exercise effects on mucosal immunity. Immunology and cell biology, v. 78, n. 5, p. 536–544, 2000. GOLDSZMID, R. S. et al. Dendritic Cells Charged with Apoptotic Tumor Cells Induce Long-Lived Protective CD4+ and CD8+ T Cell Immunity against B16 Melanoma. The Journal of Immunology, v. 171, n. 11, p. 5940–5947, 2003. HANDSCHIN, C.; SPIEGELMAN, B. M. The role of exercise and PGC1α in inflammation and chronic disease. Nature, v. 454, n. 7203, p. 463–469, 2008. HARABUCHI, Y. et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. The Lancet, v. 335, n. 8682, p. 128–130, 1990. HARABUCHI, Y.; YAMANAKA, N.; KATAURA, A. Identification of lymphocyte subsets and natural killer cells in head and neck cancers. An immunohistological study using monoclonal antibodies. Archives of oto-rhino- laryngology, v. 242, n. 1, p. 89–97, 1985. HASEBE, H. et al. Dysfunctional regulation of the development of monocyte- derived dendritic cells in cancer patients. Biomed.Pharmacother., v. 54, n. 0753–3322 (Print), p. 291–298, 2000. HEPPNER, G. H. et al. Heterogeneity in Drug Sensitivity Among Tumor-Cell Sub-Populations of a Single Mammary-Tumor. Cancer Research, v. 38, n. 11, p. 3758– 3763, 1978. HEPPNER, G.H.; MILLER, F.R.; SHEKHAR, P.M. (2000). Nontransgenic models of breast cancer. BreastCancer Res. 2, 331–334. HERR, Gerli Elenise et al. Avaliação de conhecimentos acerca da doença oncológica e práticas de cuidado com a saúde. Rev Bras Cancerol, v. 59, n. 1, p. 33-41, 2013. HIRAOKA, N. et al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology, v. 140, n. 1, p. 310–321, 2011. IGNEY, F. H.; KRAMMER, P. H. Immune escape of tumors: apoptosis resistance and tumor counterattack. J. Leukoc. Biol., v. 71, n. 6, p. 907–920, 2002. INSTITUTO NACIONAL DE CÂNCER JOSÉ DE ALENCAR GOMES DA SILVA. Estimativa 2016: incidência de câncer no Brasil [Internet]. Rio de Janeiro: INCA; 2016. Available from: http://www.inca.gov.br/estimativa/2016/. JABRANE-FERRAT, N. et al. Challenge with mammary tumor cells expressing MHC class II and CD80 prevents the development of spontaneously arising tumors in MMTV-neu transgenic mice. Cancer gene therapy, v. 13, n. 11, p. 1002–10, 2006. JONJI, B. N. et al. From the *Istituto di Ricerche Farmacologiche Mario Negri, Centro Daniela e Catullo Borgomainerio, 20157 Mihno; and tClinica Medica, Universitd di Perugia, 06100 Perugia,. Journal of expe, v. 176, n. October, p. 1165–1174, 1992. KAH-WAI, L. Dendritic cells heterogeneity and its role in cancer immunity. Journal of cancer research and therapeutics, v. 2, p. 35, 2006. KARINA, K. et al. Proteína p53 e o câncer: controvérsias e esperanças. Estudos, Goiânia, v. 35, n. 1/2, p. 123–141, 2008. KOIDO, S. et al. Regulation of tumor immunity by tumor/dendritic cell fusions. Clinical and Developmental Immunology, v. 2010, 2010. KURODA, T. et al. Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression. Molecular and Cellular Biology, v. 25, n. 6, p. 2475–2485, 2005. LANE, HW;KEITH, RE;STRAHAN, S;WHITE, M. The effect of diet, exercise 7 and 7,12-dimethylbenz(a)anthracene on food intake, body composition and carcass energy levels in virgin female BALB/c mice. J. Nutr., v. 121, p. 1876–1882, 1991. LEACH, D. R.; KRUMMEL, M. F.; ALLISON, J. P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science, v. 271, n. 5256, p. 1734–1736, 22 mar. 1996. LEANDRO, C. G. et al. Mecanismos adaptativos do sistema imunol??gico em resposta ao treinamento físico. Revista Brasileira de Medicina do Esporte, v. 13, n. 13 5, p. 343–348, 2007. LOEB, L. A.; HARRIS, C. C. NIH Public Access. v. 68, n. 17, p. 6863–6872, 2009. LUCAS DA NOBREGA, A. C. The Subacute Effects of Exercise: Concept, Characteristics, and Clinical Implications. Exercise and Sport Sciences Reviews, v. 33, n. 2, p. 84–87, 2005. MACCHETTI, A. H. et al. Tumor-Infiltrating Cd4 + T Lymphocytes in Early Breast Cancer Reflect Lymph Node Involvement. Clinics, v. 61, n. 3, p. 203–208, 2006. MEAZZA, R. et al. Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells. European Journal of Immunology, v. 33, n. 5, p. 1183–1192, 2003. MELIEF, C. J. M. Cancer Immunotherapy by Dendritic Cells. Immunity, v. 29, n. 3, p. 372–383, 2008. MOLDOVEANU, A I.; SHEPHARD, R. J.; SHEK, P. N. The cytokine response to physical activity and training. Sports medicine (Auckland, N.Z.), v. 31, n. 2, p. 115–144, 2001. MORECKI, S.; YACOVLEV, L.; SLAVIN, S. Effect of indomethacin on tumorigenicity and immunity induction in a murine model of mammary carcinoma. International Journal of Cancer, v. 75, n. 6, p. 894–899, 1998. MORTARA, L. et al. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clinical Cancer Research, v. 12, n. 11 I, p. 3435–3443, 2006. NEVES, A. R. et al. Dendritic cells derived from metastatic cancer patients vaccinated with allogeneic dendritic cell-autologous tumor cell hybrids express more CD86 and induce higher levels of interferon-gamma in mixed lymphocyte reactions. Cancer Immunology, Immunotherapy, v. 54, n. 1, p. 61–66, 2005. NIEMAN, D. C. et al. Moderate exercise training and natural killer cell cytotoxic activity in breast cancer patients. International Journal of Sports Medicine, v. 16, n. 5, p. 334–337, 1995. NIEMAN, D. C. Is infection risk linked to exercise workload? Medicine and science in sports and exercise, v. 32, n. 7 Suppl, p. S406-11, jul. 2000. OSTRAND-ROSENBERG, S. et al. Expression of {MHC} Class {II} and {B7-4 1} and {B7-2} costimulatory molecules accompanies tumor rejection and reduces the metastatic potential of tumor cells. Tissue Antigens, v. 47, n. 5, p. 414–421, 1996. PALUCKA, K.; BANCHEREAU, J. Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, v. 12, n. 4, p. 265–277, 2012. PAUL, W. E.; SEDER, R. A. Lymphocyte responses and cytokines. Cell, v. 76, n. 2, p. 241–251, 1994. PEDERSEN, N. L. et al. Neuroticism, extraversion, and related traits in adult twins reared apart and reared together. Journal of personality and social psychology, v. 55, n. 6, p. 950–957, 1988. PERES, C. M.; OTTON, R.; CURI, R. Modulation of lymphocyte proliferation by macrophages and macrophages loaded with arachidonic acid. Cell Biochemistry and Function, v. 23, n. 6, p. 373–381, 2005. PETERSEN, A. M. W.; PEDERSEN, B. K. The anti-inflammatory effect of exercise. Journal of Applied Physiology, v. 98, n. 4, p. 1154–1162, 2005. PULASKI, B. A; OSTRAND-ROSENBERG, S. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer research, v. 58, n. 7, p. 1486–93, 1 abr. 1998. PULASKI, B. A.; TERMAN, D. S.; KHAN, S.; MULLER, E.; OSTRAND-ROSENBERG, S. (2000) Cancer Res. 60, 2710–2715. PULASKI, B. A.; OSTRAND-ROSENBERG, S. Mouse 4T1 breast tumor model. CurrProtocImmunol, v. 20, n. 2, 2001. RUSSO, J.; GUSTERSON, B.A.; ROGERS, A.E. et al. Comparative study of human and rat mammary tumorigenesis. Lab Invest 1990; 62:244–278. SCHAROVSKY, O. G. et al. From immune surveillance to tumor-immune escape : the story of an enemy with multiple strategies of resistance and counterattack. Inmunología, v. 25, n. 1, p. 101–114, 2006. SHANKARAN, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, v. 410, n. 6832, p. 1107–1111, 2001. SHIRAI, A.; FURUKAWA, M.; YOSHIZAKI, T. Expression of intercellular adhesion molecule (ICAM)-1 in adenoid cystic carcinoma of the head and neck. The Laryngoscope, v. 113, n. 11, p. 1955–1960, 2003. SLOOTWEG, P. J.; KOOLE, R.; HORDIJK, G. J. The presence of p53 protein in relation to Ki-67 as cellular proliferation marker in head and neck squamous cell carcinoma and adjacent dysplastic mucosa. European Journal of Cancer. Part B: Oral Oncology, v. 30, n. 2, p. 138–141, 1994. SPECK, R. M. et al. An update of controlled physical activity trials in cancer survivors : a systematic review and meta-analysis. p. 87–100, 2010. STUPACK, D. G.; CHERESH, D. A. Apoptotic cues from the extracellular matrix: regulators of angiogenesis. Oncogene, v. 22, n. 56, p. 9022–9029, 2003. THORLING, E.; JACOBSEN, N.; OVERVAD, K. The effect of treadmill exercise on Azoxymethane-induced intestinal neoplasia in the male fischer rat on two different High-fat diets. Nutrition and Cancer, v. 22, n. 1, p. 31–41, 1994. TURNIS, M. E.; ROONEY, C. M. Enhancement of dendritic cells as vaccines for cancer. Immunotherapy, v. 2, n. 6, p. 847–862, 2010. VIGNALI, D. A. A.; COLLISON, L. W.; WORKMAN, C. J. How regulatory T cells work. Nature Reviews Immunology, v. 8, n. 7, p. 523–532, 2008. WANG, H. Y. et al. Tumor-Specific Human CD4+ Regulatory T Cells and Their Ligands: Implications for Immunotherapy. Immunity, v. 20, n. 1, p. 107–118, 2004. WANG, Z. et al. Role of IFN- ¥u03b3 in induction of Foxp3 and conversion of CD4 + CD25 ¥u2013 T cells to CD4 + Tregs. The Journal of Clinical Investigation, v. 116, n. 9, p. 2434–2441, 2006. WEI, W. Z.; MORRIS, G. P.; KONG, Y. C. Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells. Cancer Immunol Immunother., v. 53, n. 2, p. 73–8. Epub 2003 Nov 11., 2004. WOODS, Jeffrey A.; DAVIS, J. Mark. Exercise, monocyte/macrophage function, and cancer. Medicine and Science in Sports and Exercise, v. 26, n. 2, p. 147-156, 1994. YAMAGUCHI, T.; SAKAGUCHI, S. Regulatory T cells in immune surveillance and treatment of cancer. Seminars in Cancer Biology, v. 16, n. 2, p. 115–123, 2006. YOON, K. J.; MILLER, A. L.; KREITZBURG, K. M. The role of ICAM-2 in neuroblastoma. Oncoscience, v. 2, n. 11, p. 915, 2015. ZHU, J.; PAUL, W. E. CD4 T cells : fates , functions , and faults ASH 50th anniversary review CD4 T cells : fates , functions , and faults. Immunobiology, v. 112, n. 5, p. 1557–1569, 2009. ZIEKER, D. et al. cDNA microarray analysis reveals novel candidate genes expressed in human peripheral blood following exhaustive exercise. Physiological Genomics, v. 23, n. 3, p. 287–294, 2005. ZOUAIN, C. S. et al. Schistosoma mansoni PIII antigen modulates in vitro granuloma formation by regulating CD28, CTLA-4, and CD86 expression in humans. Immunology Letters, v. 91, n. 2–3, p. 113–118, 2004.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectNeoplasias mamárias.por
dc.subjectImunoterapia.por
dc.subjectCélulas dendríticas.por
dc.subjectExercício.por
dc.subjectAntígenos de superfície.por
dc.subjectBreast neoplasms.eng
dc.subjectImmunotherapy.eng
dc.subjectDendritic cells.eng
dc.subjectExercise.eng
dc.subjectSurface antigens.eng
dc.subject.cnpqImunologiapor
dc.titleAvaliação do infiltrado tumoral em camundongos induzidos a tumor de mama submetidos à imunoterapia com células dendríticas e atividade físicapor
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação em Ciências da Saúde

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissert Chamberttan S Desidério.pdfDissert Chamberttan S Desidério1,56 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons