Use este identificador para citar ou linkar para este item:
http://bdtd.uftm.edu.br/handle/tede/994
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | EURIDICE, Washington Alves | - |
dc.creator.ID | 06926961646 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0755005273042576 | por |
dc.contributor.advisor1 | MORETO, Jéferson Aparecido | - |
dc.contributor.advisor1ID | 04965668901 | por |
dc.contributor.advisor1Lattes | Jéferson Aparecido | por |
dc.contributor.advisor-co1 | SLADE, Natália Bueno Leite | - |
dc.contributor.advisor-co1ID | 35071727803 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/6608176206964854 | por |
dc.date.accessioned | 2020-10-08T13:27:16Z | - |
dc.date.issued | 2019-10-16 | - |
dc.identifier.citation | EURIDICE, Washington Alves. Obtenção de filmes a-C:H via técnica PECVD na liga Ti6Al4V: caracterização estrutural e morfológica, eletroquímica e biológica. 2019. 84f. Dissertação (Mestrado em Ciências) - Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Universidade Federal do Triângulo Mineiro, Uberaba, 2019. | por |
dc.identifier.uri | http://bdtd.uftm.edu.br/handle/tede/994 | - |
dc.description.resumo | Os tratamentos de superfície são frequentemente realizados com a proposta de melhorar as propriedades mecânicas, químicas e biológicas de um biomaterial. Este trabalho tem como objetivo investigar as respostas biológicas dos filmes a-C:H produzidos pela técnica PECVD sobre substrato da liga Ti6Al4V. Os filmes produzidos foram caracterizados morfologicamente e estruturalmente por microscopia óptica (OM), MEV, AFM, EDX, espectroscopia de infravermelho (FTIR), Raman (RS) e XPS. Posteriormente, foram realizados testes de biocompatibilidade e citotoxicidade em células osteoblásticas e em células mononucleares do sangue periférico humano (PBMCs) na liga Ti6Al4V sem revestimento e com o filme a-C:H. Os resultados de Ramam exibiram um valor de 0,71 para a razão ID/IG. Os espectros XPS deconvoluídos revelaram a presença de três componentes principais: C1 (284,4 eV) associado à ligações C=C em uma hibridação sp2, bem como C2 (285,2 eV) associado à hibridação sp3. Os resultados de impedância eletroquímica mostraram que o filme a-C:H atua como uma barreira protetora contra o processo de corrosão em saliva artificial. Os resultados biológicos mostraram que independentemente da população de células, quando a apoptose total de células osteoblásticas ou PBMCs foi avaliada, apenas células cultivadas na liga sem a-C:H apresentaram indução significativa do processo apoptótico. Além disso, apenas PBMCs cultivadas na liga sem a-C:H apresentaram indução significativa de citocinas inflamatórias e anti-inflamatórias que caracterizam a ativação imune. Os resultados biológicos deste estudo sugerem que a estratégia de uso do filme a-C:H para cobrir a liga Ti6Al4V promoveu desde a proteção do ambiente fisiológico até a melhoria da biocompatibilidade. | por |
dc.description.abstract | With the purpose of improving the mechanical, chemical and biological properties of the Ti6Al4V alloy used as biomaterial, surface treatments are often performed. This work aims to investigate the biological responses of a-C:H films produced by PECVD technique onto substrate of Ti6Al4V alloy. The films produced were characterized morphologically and structurally by optical microscope (OM), SEM, AFM, EDX, FTIR Raman Spectroscopy (RS) and XPS. Afterwards, biocompatibility and cytotoxicity tests on osteoblastic cells and/or Human Peripheral Blood Mononuclear Cells (PBMCs) were performed on the Ti6Al4V alloy with coated and uncoated a-C:H film. The Ramam results exhibited a value of 0.71 for ID/IG ratio. The deconvoluted XPS spectra of C 1s peaks disclose the presence of three main components: C1 (284.4 eV) associated to C=C bounds in one sp2 hybridization as well as C2 (285.2 eV) associated to sp3 hybridization. The impedance results showed that a-C:H film acts as a protective barrier against the corrosion process in artificial saliva medium. Regardless of the cell population, when the total apoptosis of osteoblastic cells or PBMCs was evaluated, only cells cultured on the alloy without a-C:H had significant induction of the apoptotic process. Moreover, only PBMCs cultured on the alloy without a-C:H had significant induction of inflammatory and anti-inflammatory cytokines that characterize immune activation. The biological results from this study suggest that the strategy of use a-C:H film to cover the Ti6Al4V alloy promoted since its protection of the physiological environment to its biocompatibility improvement. | eng |
dc.format | application/pdf | * |
dc.thumbnail.url | http://bdtd.uftm.edu.br/retrieve/6715/Dissert%20Washington%20Alves.pdf.jpg | * |
dc.language | por | por |
dc.publisher | Universidade Federal do Triângulo Mineiro | por |
dc.publisher.department | Instituto de Ciências Biológicas e Naturais - ICBN | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFTM | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia dos Materiais | por |
dc.relation.references | ABDEL-HADY, Mohamed; HINOSHITA, Keita; MORINAGA, Masahiko. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scripta Materialia, [s.l.], v. 55, n. 5, p.477-480, set. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.scriptamat.2006.04.022. ABIMO. Censo da odontologia. 2014. Disponível em: <https://abimo.org.br/dados-dosetor/censo-da-odontologia/>. Acesso em: 30 nov. 2018. AHMED, Yassin Mustafa et al. Titanium and its Alloy. International Journal Of Science And Research. p. 1351-1361. out. 2014. ALEIXO, Giorgia T. et al. Effects of Omega Phase on Elastic Modulus of Ti-Nb Alloys as a Function of Composition and Cooling Rate. Solid State Phenomena, [s.l.], v. 138, p.393-398, mar. 2008. Trans Tech Publications. http://dx.doi.org/10.4028/www.scientific.net/ssp.138.393. ALTAN-BONNET, Grégoire; MUKHERJEE, Ratnadeep. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nature Reviews Immunology, [s.l.], v. 19, n. 4, p.205-217, 15 fev. 2019. Springer Nature. http://dx.doi.org/10.1038/s41577-019-0131-x. ANKEM, S; GREENE, C.a. Recent developments in microstructure/property relationships of beta titanium alloys. Materials Science And Engineering: A, [s.l.], v. 263, n. 2, p.127-131, maio 1999. Elsevier BV. http://dx.doi.org/10.1016/s0921-5093(98)01170-8. ASM. Metals Handbook. 10ed. Edition Metals Handbook, v.12, 1990, 857p. ARSLAN, Ersin et al. Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS. Surface And Coatings Technology, [s.l.], v. 214, p.1-7, jan. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2012.10.006. de ASSIS, Sérgio Luiz; WOLYNEC, Stephan; COSTA, Isolda. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, [s.l.], v. 51, n. 8-9, p.1815-1819, jan. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.electacta.2005.02.121 BAYÓN, R. et al. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribology International, [s.l.], v. 88, p.115-125, ago. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.triboint.2015.03.007. BONELLI, M. et al. Structural and Mechanical Properties of Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition With Varying Laser Intensity. Mrs Proceedings, [s.l.], v. 593, p.359-364, 1999. Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-593- 359. BRAGA, Neila de Almeida et al. OBTENÇÃO DE TITÂNIO METÁLICO COM POROSIDADE CONTROLADA POR METALURGIA DO PÓ. Química Nova, São José dos Campos, v. 30, n. 2, p.450-457, nov. 2006. BROSSIA, C.S.; CRAGNOLINO, G.A.. Effect of palladium on the corrosion behavior of titanium. Corrosion Science, [s.l.], v. 46, n. 7, p.1693-1711, jul. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.corsci.2003.10.003. BRUNETTE, Donald M. et al. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Berlim: Springer-verlag, 2001. 1029 p. CALLISTER JR, William D.. Ciência e engenharia dos materiais: uma introdução. 5. ed. Rio de Janeiro: Ltc, 2002. 589 p. CASIRAGHI, C.; FERRARI, A. C.; ROBERTSON, J.. Raman spectroscopy of hydrogenated amorphous carbons. Physical Review B, [s.l.], v. 72, n. 8, p.1-14, 1 ago. 2005. American Physical Society (APS). http://dx.doi.org/10.1103/physrevb.72.085401. CHEN, G. Z.. The FFC Cambridge process and its relevance to valorisation of ilmenite and titanium-rich slag. Mineral Processing And Extractive Metallurgy, [s.l.], v. 124, n. 2, p.96- 105, 19 nov. 2014. Informa UK Limited. http://dx.doi.org/10.1179/1743285514y.0000000073. CHOU, Chau-chang; LIN, Jyun-sin; WU, Rudder. Microstructures and mechanical properties of an a-C: N film as the interlayer and the outmost layer of a DLC-deposited Ti bio-alloy. Ceramics International, [s.l.], v. 43, p.776-783, ago. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.ceramint.2017.05.196. CHOUDHURY, Dipankar et al. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads. Journal Of Biomedical Materials Research Part B: Applied Biomaterials, [s.l.], v. 103, n. 5, p.1002-1012, 12 set. 2014. Wiley. http://dx.doi.org/10.1002/jbm.b.33274. CORCUERA, Valerie Cecile. FILMES DE DLC COM NANOCRISTAIS DE DIAMANTE PARA APLICAÇÕES ESPACIAIS. 2016. 108 f. Tese (Doutorado) - Curso de Engenharia e Tecnologia Espaciais/ciência e Tecnologia de Materiais e Sensores, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2016 CORDEIRO, Jairo M. et al. Development of binary and ternary titanium alloys for dental implants. Dental Materials, [s.l.], v. 33, n. 11, p.1244-1257, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.dental.2017.07.013. CREMASCO, Alessandra. Deformação Plástica a Frio, Transformação de Fases e Propriedades Mecânicas de Ligas Ti-Nb-Sn para Uso Biomédico. 2012. 243 f. Tese (Doutorado) - Curso de Engenharia Mecânica, Unicamp, Campinas, 2012. CREMASCO, Alessandra. Propriedades Mecânicas e Resistência à Corrosão de Ligas Ti- 35Nb Aplicadas Como Biomaterial. 2008. 87 f. Dissertação (Mestrado) - Curso de Engenharia Mecânica, Engenharia dos Materiais, Universidade Estadual de Campinas, Campinas, 2008. CHU, Paul K.; LI, Liuhe. Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry And Physics, [s.l.], v. 96, n. 2-3, p.253-277, abr. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.matchemphys.2005.07.048. DAPUNT, Ulrike et al. The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. Bmc Musculoskeletal Disorders, [s.l.], v. 17, n. 1, p.1-9, 2 jun. 2016. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12891-016-1091-y. DONACHIE Jr., Matthew J.. Titanium: A Technical guide. 2. ed. Ohio: Asm, 2000. 367 p. DONIACH, S.; SUNJIC, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. Journal of Physics C: Solid State Physics, [s.l.], v.3, p. 285, 1970. EISENBARTH, E. et al. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, [s.l.], v. 25, n. 26, p.5705-5713, nov. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.biomaterials.2004.01.021. FALCADE, T.. Eletrodeposição De Filmes De Carbono Sobre A Liga De Titânio Ti6Al4V: Influência Da Adição Do Líquido Iônico Prótico Lactato De 2 Hidroxietanolamina ao Eletrólito de N,N-Dimetilformamida. 2015. 199 f. Tese (Doutorado) - Curso de Engenharia de Minas, Metalurgia e Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2015. FANG, Zhigang Zak et al. Powder metallurgy of titanium: past, present, and future. International Materials Reviews, [s.l.], p.1-53, 28 ago. 2017. Informa UK Limited. http://dx.doi.org/10.1080/09506608.2017.1366003. FAROKHI, Mehdi et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, [s.l.], v. 36, n. 1, p.68-91, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.biotechadv.2017.10.001. FREESE, Howard L.; VOLAS, Michael G.; WOOD, Randolph. Metallurgy and Technological Properties of Titanium and Titanium Alloys. In: BRUNETTE, Donald M. et al (Ed.). Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Berlim: Springer, 2001. Cap. 3. p. 25-51. FOUZIYA, Begum et al. Surface modifications of titanium implants – The new, the old, and the never heard of options. Journal Of Advanced Clinical & Research Insights, [s.l.], v. 3, n. 6, p.215-219, 2016. Incessant Nature Science Publishers Pvt Ltd.. http://dx.doi.org/10.15713/ins.jcri.142. GAUR, Swati et al. Silane-Coated Magnesium Implants with Improved In-Vitro Corrosion Resistance and Biocompatibility. Journal Of Materials Science & Surface Engineering, [S.l]., v. 4, n. 5, p.415-424, 21 set. 2016. GUO, X.; SHI, H.; LIFENG, X. Corrosion and Electrochemical Impedance Properties of Ti Alloys as Orthopaedic Trauma Implant Materials. International Journal Of Electrochemical Science, [s.l.], v. 12, p.9007-9016, 26 jul. 2017. HABASHI, Fathi. Handbook of Extractive Metallurgy: The Metal Indstry Ferrous Metals. Quebec: Wiley-vch, 1997. HATEM, Andre et al. Tribocorrosion behavior of DLC-coated Ti-6Al-4V alloy deposited by PIID and PEMS + PIID techniques for biomedical applications. Surface And Coatings Technology, [s.l.], v. 332, p.223-232, dez. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2017.07.004. JARIWALA, Bhavin N.; CIOBANU, Cristian V.; AGARWAL, Sumit. Atomic hydrogen interactions with amorphous carbon thin films. Journal Of Applied Physics, [s.l.], v. 106, n. 7, p.0-9, out. 2009. AIP Publishing. http://dx.doi.org/10.1063/1.3238305. KARIMI, Shima; NICKCHI, Tirdad; ALFANTAZI, Akram M.. Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions. Applied Surface Science, [s.l.], v. 258, n. 16, p.6087-6096, jun. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.apsusc.2012.03.008. KIRADZHIYSKA, Denitsa D.; MANTCHEVA, Rositsa D.. Overview of Biocompatible Materials and Their Use in Medicine. Folia Medica, [s.l.], v. 61, n. 1, p.34-40, 1 mar. 2019. Pensoft Publishers. http://dx.doi.org/10.2478/folmed-2018-0038. KIRMANIDOU, Yvoni et al. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. Biomed Research International, [s.l.], v. 2016, p.1-21, 2016. Hindawi Limited. http://dx.doi.org/10.1155/2016/2908570. KREBS, Robert E.. The History and Use of Our Earth's Chemical Elements: Reference Guide. 2. ed. Londres: Greenwood Press, 2006. 422 p. KULKARNI, Mukta et al. Biomaterial surface modification of titanium and titanium alloys for medical applications. In: SEIFALIAN, Alexander et al (Ed.). Nanomedicine. Us: One Central Press, 2014. p. 111-136. LEE, C. M.; JU, C. P.; LIN, J. H. Chern. Structure-property relationship of cast Ti-Nb alloys. Journal Of Oral Rehabilitation, [s.l.], v. 29, n. 4, p.314-322, abr. 2002. Wiley. http://dx.doi.org/10.1046/j.1365-2842.2002.00825.x. LEE, Yu Mi et al. In vivo and in vitro response to electrochemically anodized Ti-6Al-4V alloy. Journal Of Materials Science: Materials in Medicine, [s.l.], v. 19, n. 5, p.1851-1859, 4 out. 2007. Springer Nature. http://dx.doi.org/10.1007/s10856-007-3265-5. LI, Yuhua et al. New Developments of Ti-Based Alloys for Biomedical Applications. Materials, [s.l.], v. 7, n. 3, p.1709-1800, 4 mar. 2014. MDPI AG. http://dx.doi.org/10.3390/ma7031709. LIAO, T.t. et al. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Materials Science And Engineering: C, [s.l.], v. 69, p.751-759, dez. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.msec.2016.07.064. LINDIGKEIT, J. et al. Titanium in Dentistry. In: LEYENS, C.; PETERS, M.. Titanium and titanium alloys: Fundamentals and Applications. [s.l.]: Wiley-vch, 2003. p. 453-466. LIU, X; CHU, P; DING, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science And Engineering: R, [s.l.], v. 47, n. 3-4, p.49-121, 24 dez. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.mser.2004.11.001. LOVE, C.A. et al. Diamond like carbon coatings for potential application in biological implants — a review. Tribology International, [s.l.], v. 63, p.141-150, jul. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.triboint.2012.09.006. LÜTJERING, G., Williams, J.C. Titanium. Springer–Verlag, Germany, p. 378, 2003. MACÊDO, Haroldo Reis Alves de. Efeito do tratamento térmico do titânio sobre a proliferação de células Pré-Osteoblásticas. 2008. 82 f. Dissertação (Mestrado) - Curso de Ciência e Engenharia dos Materiais, Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2008. MEREL, P et al. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Applied Surface Science, [s.i.], v. 1-2, n. 136, p.105-110, 1 out. 1998. MIOTTO, Larissa N. et al. Surface properties of Ti-35Nb-7Zr-5Ta. The Journal Of Prosthetic Dentistry, [s.l.], v. 116, n. 1, p.102-111, jul. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.prosdent.2015.10.024. MODABBERASL, Ali et al. Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field. Carbon, [s.l.], v. 94, p.485-493, nov. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2015.06.081. MOHAMMED, Mohsin Talib et al. Titanium and its Alloys, the Imperative Materials for Biomedical Applications. In: INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ENGINEERING & TECHNOLOGY, 1., 2012, Mandya. Proceedings. [n.e]: Springer, 2012. p. 91 – 95. NAKAI, Masaaki et al. Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation. Materials Letters, [s.l.], v. 65, n. 4, p.688-690, fev. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.matlet.2010.11.006. NELSON, T.; NAKASHIMA, M.; SEAN, J.. How secure are Laparoscopically Placed Clips ?, Arch Surg., [s.l.], v. 127, p. 718-720, 1992. NGWA, Hilary Afeseh et al. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease. Toxicology And Applied Pharmacology, [s.l.], v. 240, n. 2, p.273-285, out. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.taap.2009.07.025. NGWA, Hilary Afeseh et al. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. Neurotoxicology, [s.l.], v. 43, p.73-81, jul. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.neuro.2013.12.004. NIINOMI, Mitsuo. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science And Technology Of Advanced Materials, [s.l.], v. 4, n. 5, p.445-454, jan. 2003. Informa UK Limited. http://dx.doi.org/10.1016/j.stam.2003.09.002. NIINOMI, Mitsuo; NAKAI, Masaaki; HIEDA, Junko. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, [s.l.], v. 8, n. 11, p.3888-3903, nov. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.actbio.2012.06.037 NUNE, K. C. et al. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure. Journal Of Biomedical Materials Research Part A, [s.l.], v. 105, n. 3, p.859- 870, 25 nov. 2016. Wiley. http://dx.doi.org/10.1002/jbm.a.35963. OLIVEIRA, E. C.; CRUZ, S. A.; AGUIAR, P. H. L.. Effect of PECVD Deposition Parameters on the DLC/PLC Composition of a-C:H Thin Films. Sociedade Brasileira de Química, [s.l.], v. 23, n. 9, p.1657-1662, 2012. OLIVEIRA, Luciana Soares de Andrade Freitas et al. Biomateriais com aplicação na regeneração óssea: método de análise e perspectivas futuras. Revista de Ciências Médicas e Biológicas, [s.l.], v. 9, p.37-44, 2010. OLIVEIRA, M.A.S; VIEIRA, A.K; MASSI, M. Electrochemical behavior of the Ti–6Al–4V alloy coated with a-C: H films. Diamond And Related Materials, [s.l.], v. 12, n. 12, p.2136- 2146, dez. 2003. Elsevier BV. http://dx.doi.org/10.1016/s0925-9635(03)00253-x. PARTICHELI, Marcio JosÉ. ESTRUTURA E MOLHABILIDADE DE FILMES FINOS DE CARBONO AMORFO HIDROGENADO EXPOSTOS A RADIAÇÃO. 2015. 82 f. Dissertação (Mestrado) - Curso de FÍsica, Universidade do Estado de Santa Catarina, Joinville, 2015. PAUL, Rajib. Diamond-Like-Carbon Coatings for Advanced Biomedical Applications. Global Journal Of Nanomedicne, [s.i.], v. 2, n. 5, p.1-5, 23 ago. 2017. PAWELEC, Katarzyna et al. Influence of pH on the tribological properties of DLC-coated Ti- 6Al-4V titanium alloy. Aip Conference Proceedings, [s.l.], p.200211-200216, 2018. Author(s). http://dx.doi.org/10.1063/1.5056284. PETERS, Manfred; LEYENS, Christoph. Structure and Properties of Titanium and Titanium alloys. In: LEYENS, Christoph; PETERS, Manfred (Ed.). Titanium and Titanium Alloys: Fundamentals an Applications. Köln: Wiley-vch, 2003. Cap. 1. p. 1-36. PERL, Daniel P.; MOALEM, Sharon. Aluminum, Alzheimer’s Disease and the Geospatial Occurrence of Similar Disorders. Mineralogical Society Of America, Nova Iorque, v. 64, p.115-134, 2006. PILLACA, E.j.d.m. et al. DLC deposition inside of a long tube by using the pulsed-DC PECVD process. Surface And Coatings Technology, [s.l.], v. 359, p.55-61, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2018.12.011.E. J. D. M. Pillaca, M. A. PINA, V. Guiñón et al. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. Journal Of The Mechanical Behavior Of Biomedical Materials, [s.l.], v. 46, p.59-68, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.jmbbm.2015.02.016. PINEIZ, Regiane Aparecida. preparação e caracterização estrutural, mecânica e anelástica de ligas do sistema Ti-ta contendo oxigênio intersticial, para uso biomédico. 2014. 89 f. Dissertação (Mestrado) - Curso de Ciência e Tecnologia de Materiais, Universidade Estadual Paulista, Bauru, 2014. PIRES, Ana Luiza R.; BIERHALZ, Andréa C. K.; MORAES, Ângela M.. BIOMATERIALS: TYPES, APPLICATIONS, AND MARKET. Química Nova, [s.l.], p.957-971, 2015. GN1 Genesis Network. http://dx.doi.org/10.5935/0100-4042.20150094. POURSAEE, Amir. Corrosion of Ti 6Al 4V orthopaedic alloy under stress. Materialia, [s.l.], v. 6, p.100271-100288, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.mtla.2019.100271. RAJAN, S. Thanka; BENDAVID, A.; SUBRAMANIAN, B.. Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Colloids And Surfaces B: Biointerfaces, [s.l.], v. 173, p.109-120, jan. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.colsurfb.2018.09.041. RANGEL, Uriel Darhê Oudinot Dias et al. Corrosion and Micro-abrasive Wear Behaviour of 2524-T3 Aluminium Alloy with PAni-NPs/PSS LbL Coating. Materials Research, [s.l.], v. 22, n. 3, p.1-9, 2019. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1980-5373-mr-2018- 0593. RIBEIRO, Ana Lúcia Roselino et al. Mechanical, physical, and chemical characterization of Ti–35Nb–5Zr and Ti–35Nb–10Zr casting alloys. Journal Of Materials Science: Materials in Medicine, [s.l.], v. 20, n. 8, p.1629-1636, 1 abr. 2009. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10856-009-3737-x. RIBEIRO, Ana Lúcia Roselino et al. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomedical Materials, [s.l.], v. 8, n. 6, p.065005-065016, 26 nov. 2013. IOP Publishing. http://dx.doi.org/10.1088/1748-6041/8/6/065005. ROBERTSON, J. Diamond-like amorphous carbon. Materials Science And Engineering: R, [s.l.], v. 37, n. 4-6, p.129-281, 24 maio 2002. Elsevier BV. http://dx.doi.org/10.1016/s0927- 796x(02)00005-0. ROY, Ritwik Kumar; LEE, Kwang-ryeol. Biomedical applications of diamond-like carbon coatings: A review. Journal Of Biomedical Materials Research Part B: Applied Biomaterials, [s.l.], v. 83, n. 1, p.72-84, 2007. Wiley. http://dx.doi.org/10.1002/jbm.b.30768. SAMPAIO, Waneli Cristina; CARVALHO, Luna Alcântara Neres de; CARNEIRO, Marcela Lemos Brettas. AVANÇOS NO DESENVOLVIMENTO DE BIOMATERIAIS VISANDO TRATAMENTO DE FERIDAS CRÔNICAS. Revista Eletrônica do Programa de Mestrado em Direitos Humanoscidadania e Violência/ciência Política do Centro Universitário Unieuro, Brasília, v. 25, p.70-105, 2018. dos SANTOS, Adélia Moreira Marques et al. Corrosion and cell viability studies of graphitelike hydrogenated amorphous carbon films deposited on bare and nitrided titanium alloy. Corrosion Science, [s.l.], v. 82, p.297-303, maio 2014. Elsevier BV. http://dx.doi.org/10.1016/j.corsci.2014.01.025. dos SANTOS, Everton Diniz et al. Macrophages adhesion rate on Ti-6Al-4V substrates: polishing and DLC coating effects. Research On Biomedical Engineering, [s.l.], v. 32, n. 2, p.144-152, jun. 2016. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/2446-4740.03616. SANTOS, George Gonçalves dos; MARINHO2, Sônia Maria Oliveira Cavalcanti; MIGUEL, Fúlvio Borges. Polymers as biomaterials for cartilaginous tissue. Rev. Ciênc. Méd. Biol., Salvador, v. 12, n. 3, p.367-373, dez. 2013. SANTOS, Lúcia V. et al. DLC cold welding prevention films on a Ti6Al4V alloy for space applications. Surface And Coatings Technology, [s.l.], v. 200, n. 8, p.2587-2593, jan. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2005.08.151. SANTOS, M.; BILEK, M.M.M.; WISE, S.G.. Plasma-synthesised carbon-based coatings for cardiovascular applications. Biosurface And Biotribology, [s.l.], v. 1, n. 3, p.146-160, set. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.bsbt.2015.08.001. SCHMIDT-WEBER, Carsten B.. Anti-IL-4 as a New Strategy in Allergy. New Trends In Allergy And Atopic Eczema, [s.l.], p.120-125, 2012. KARGER. http://dx.doi.org/10.1159/00033223 SCHUH, Jane M et al. Chemokines and cytokines: axis and allies in asthma and allergy. Cytokine & Growth Factor Reviews, [s.l.], v. 14, n. 6, p.503-510, dez. 2003. Elsevier BV. http://dx.doi.org/10.1016/s1359-6101(03)00057-1. SILVA, Danilo Lopes Costa e et al. Evaluation of Carbon thin Films Using Raman Spectroscopy. Materials Research, [s.l.], v. 21, n. 4, p.1-6, 7 jun. 2018. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1980-5373-mr-2017-0787. SIMSEK, Ijlal; OZYUREK, Dursun. Investigation of the wear and corrosion behaviors of Ti5Al2.5Fe and Ti6Al4V alloys produced by mechanical alloying method in simulated body fluid environment. Materials Science And Engineering: C, [s.l.], v. 94, p.357-363, jan. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.msec.2018.09.047. SONGÜR, Murat et al. Electrochemical corrosion properties of metal alloys used in orthopaedic implants. Journal Of Applied Electrochemistry, [s.l.], v. 39, n. 8, p.1259-1265, 29 jan. 2009. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10800- 009-9793-6. SOUZA, Maria E. P. et al. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications. Journal Of Materials Science: Materials in Medicine, [s.l.], v. 20, n. 2, p.549-552, 6 nov. 2008. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10856-008-3623-y. SOUZA, Alann T.P. et al. Effect of bone morphogenetic protein 9 on osteoblast differentiation of cells grown on titanium with nanotopography. Journal Of Cellular Biochemistry, [s.l.], v. 119, n. 10, p.8441-8449, 22 jun. 2018. Wiley. http://dx.doi.org/10.1002/jcb.27060. STAN, E. et al. Polymer-like and diamond-like carbon coatings prepared by rf-pecvd for biomedical applications. Digest Journal Of Nanomaterials & Biostructures, [s.l.], v. 5, n. 3, p.705-718, jul. 2010. SUGAHARA, Tarcila et al. Caracterização mecânica e microestrutural da liga Ti-6Al-4V tratada termicamente. Revista Brasileira de Aplicações de Vácuo, [s.l.], v. 27, n. 4, p.195- 199, 2008. TANE, M. et al. Elastic properties of single-crystalline ω phase in titanium. Acta Materialia, [s.l.], v. 61, n. 20, p.7543-7554, dez. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.actamat.2013.08.036. TRINDADE, M. In vitro reaction to orthopaedic biomaterials by macrophages and lymphocytes isolated from patients undergoing revision surgery. Biomaterials, [s.l.], v. 22, n. 3, p.253-259, fev. 2001. Elsevier BV. http://dx.doi.org/10.1016/s0142-9612(00)00181-2. TUCUREANU, Vasilica; MATEI, Alina; AVRAM, Andrei Marius. FTIR Spectroscopy for Carbon Family Study. Critical Reviews In Analytical Chemistry, [s.l.], v. 46, n. 6, p.502- 520, 3 mar. 2016. Informa UK Limited. http://dx.doi.org/10.1080/10408347.2016.1157013. VAGHRI, Elnaz et al. Characterization of Diamond: Like Carbon Films Synthesized by DCPlasma Enhanced Chemical Vapor Deposition. Journal Of Fusion Energy, [s.l.], v. 30, n. 5, p.447-452, 1 abr. 2011. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10894-011-9406-3. VALLÉS, Gema et al. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials, [s.l.], v. 27, n. 30, p.5199-5211, out. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.biomaterials.2006.05.045. XAVIER, Caio Castanho. ESTUDO DE TRATAMENTOS TÉRMICOS DA LIGA Ti- 15Zr-xMo. 2016. 105 f. Dissertação (Mestrado) - Curso de Ciência e Tecnologia de Materiais, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, 2016. WACHESK, C. C. et al. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications. Journal Of Nanomaterials, [s.l.], v. 2016, p.1-7, 2016. Hindawi Limited. http://dx.doi.org/10.1155/2016/8194516.67 WIRTH, C. et al. Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts. Materials Science And Engineering: C, [s.l.], v. 25, n. 1, p.51-60, jan. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.msec.2004.06.001. ZHANG, T.F. et al. Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates. Surface And Coatings Technology, [s.l.], v. 273, p.12-19, jul. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2015.03.031. ZHANG, Renhui; ZHAO, Juan; YANG, Yingchang. A novel diamond-like carbon film. Surfaces And Interfaces, [s.l.], v. 7, p.1-5, jun. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.surfin.2017.02.003. ZHOU, Kai et al. Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique. Applied Surface Science, [s.l.], v. 329, p.281-286, fev. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.apsusc.2014.12.162. ZHOU, Ying Long; NIINOMI, Mitsuo; AKAHORI, Toshikazu. Decomposition of martensite α″ during aging treatments and resulting mechanical properties of Ti−Ta alloys. Materials Science And Engineering: A, [s.l.], v. 384, n. 1-2, p.92-101, out. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.msea.2004.05.0 | por |
dc.rights | Acesso Aberto | por |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Filme a-C:H. | por |
dc.subject | Liga de titânio. | por |
dc.subject | Aplicação biomédica. | por |
dc.subject | Processo apoptótico. | por |
dc.subject | a-C:H film. | eng |
dc.subject | Titanium alloy. | eng |
dc.subject | Biomedical application. | eng |
dc.subject | Apoptotic process. | eng |
dc.subject.cnpq | Materiais | por |
dc.title | Obtenção de filmes a-C:H via técnica PECVD na liga Ti6Al4V: caracterização estrutural e morfológica, eletroquímica e biológica | por |
dc.type | Dissertação | por |
Aparece nas coleções: | Programa de Pós-Graduação em Ciência e Tecnologia de Materiais |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissert Washington Alves.pdf | Dissert Washington Alves | 2,35 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons